
Release date: March, 5th 2001
Revision: 2.0

TR40xx Communications Protocol
This document describes communications protocol supported by
TR4020 (V3.20) and TR4030 (V3.30) Online Time Recorders

Help us improve this document!
Send your comments and suggestions to feedback@proxdata.com

Revision history:
August, 22nd 2000 Original document release
March, 5th 2001 V3.30-a - Added TR4030 info

Data

Table of contents

Table of contents .. 2
Section 1. Introduction .. 3

1.1. Scope of this Manual... 3
1.2. Checking the Terminal’s model number. ... 3
1.3. Checking currently loaded firmware version.. 3
1.4. Upgrading your Terminal’s firmware ... 4

Section 2. Networking with the TR4020.. 5
2.1. Daisy-chain network .. 5
2.2. Communications parameters and wiring ... 6
2.3. Using a terminal software to manually test communications 6
2.4. Addressing on a daisy-chain network ... 7
2.5. Broadcasting packets .. 8

Section 3. Command and reply packets format ... 10
3.1. Types of packet encapsulation ... 10
3.2. Structure of a simple packet (without check characters)... 10
3.3. Structure of a protected packet .. 11
3.4. Additional notes on packet integrity protection... 11
3.5. Maximum packet length and allowable character codes ... 11

Section 4. Command groups. Reply status codes ... 13
4.1. Command and reply packets ... 13
4.2. Reply status codes .. 13
4.3. Types of TR4020 commands ... 13

Section 5. Login commands .. 15
5.1. Why login? ... 15
5.2. Logging in and out .. 15
5.3. Checking current login status ... 16
5.4. How do I set the login password? ... 16
5.5. Sample online session... 16

Section 6. Data retrieval and manipulation commands .. 17
6.1. Time and Attendance database.. 17
6.2. Read transactions ... 18
6.3. Typical upload scenario ... 18
6.4. Understanding concurrent log retrieval and record adding.. 20
6.5. Cleaning up the database space .. 20
6.6. Database failures and recovery .. 20
6.7. How do I get other database statistics (like total number of records)? 20

Section 7. Item manipulation commands .. 21
7.1. The concept of Items... 21
7.2. Properties of Items .. 22
7.3. Using traditional Item handling method... 22
7.4. Learning about Items... 23
7.5. Flags field... 25
7.6. Using Item numbers instead of names .. 25
7.7. A word of caution on using Item numbers ... 25
7.8. Tables .. 26
7.9. Uploading table data ... 27
7.10. Adding, editing and deleting records ... 28

Section 8. miscellaneous commands ... 29
8.1. The Echo command .. 29
8.2. Polling the Terminal .. 29

Appendix A. List of supported Items (TimeRecorder V3.10) ... 30
Appendix B. Database record structure .. 32

Section 1. Introduction

1.1. Scope of this Manual

This Manual describes networking with and communications protocol of a TR4020 and
TR4030 Online Time Recorders. Collectively, the TR4020 and the TR4030 (but not the
TR4000) will be referred to as “TR40xx” throughout this Manual whenever possible.

The TR4020 and the TR4030 are an improved versions of a TR4000 Time Recorder
with built-in Floppy Disk Drive. While retaining all the features of its predecessor, both
Terminals offer online communications capability: the TR4020- via RS232 ports, the TR4030-
through the built-in Ethernet and RS232 ports.

To make use of the TR4020’s new hardware features, you need to have the TimeRec
firmware version 3.2 or higher loaded into the Terminal. The TR4030 needs the firmware
version 3.3 or higher. Apart from being able to handle online communications, new firmware
has a lot of functionality improvements (see TR4020/4030 User’s Manual for details).

The new firmware auto-detects the hardware configuration and is able to work with
original TR4000 as well (with all network-related features disabled). However, online
communications is only possible if this firmware is running on the TR40xx. Thus, two
conditions must be met in order to be able to communicate with the Terminal online:

• You must use the TR40xx (not TR4000)
• Your TR4020 must be loaded with the TimeRec3.2 firmware (or later). Your TR4030

must be loaded with the TimeRec3.3 firmware (or later).

1.2. Checking the Terminal’s model number.
TR4000, TR4020, and TR4030 are supplied in the same housing. Exact model number

can be checked by reading a production label on the back of the unit. The TR40xx and the
TR4030 also differ from the TR4000 in that they have port connectors located on their
connector plate (see the drawing below). Connector plate of the TR4000 is empty.

Port connectors

Production Label

Scanner

TR 4020 connectors shown.
PC/Master port of TR 4030 is of Ethernet type.

PC/Mast. Slave

1.3. Checking currently loaded firmware version

Current firmware version is displayed on startup, when you switch the TR40xx on. The
startup screen looks somewhat like this:

MONITOR v2.0
Starting app:
TimeRec V3.20
Please, wait…

Firmware version is printed on the third line (TimeRec V3.20 in this example). For

communications to work correctly, you need to have V3.20 or higher (i.e. “3.21”, “3.30”, etc..)
for the TR4020 and V3.30 or higher for the TR4030. If this condition is not met, then you must
upgrade your TR40xx’s firmware.

 4

1.4. Upgrading your Terminal’s firmware

ProxData provides firmware upgrades at no extra charge. All new versions are posted
at our website (www.proxdata.com). You may also request to receive the latest firmware
version via e-mail. Contact ProxData at info@proxdata.com or Giga-TMS at
gigatms@ms3.hinet.net. Upgrade process is described in details in the TR4020/4030 User’s
Manual.

Section 2. Networking with the TR40xx

2.1. Daisy-chain network

TR40xx Terminals are interconnected in a so called daisy-chain manner. Each Terminal
has two ports reserved for communications: one labeled “PC/Master” and another one labeled
“Slave”. Third port (“Scanner”) is used for external scanner (reader) attachment and has
nothing to do with online communications. On the TR4020, all three ports are of RS232 type,
while the PC/Master port of the TR4030 is an Ethernet port and remaining two ports are of
RS232 type.

When viewed from the top, the TR40xx has its PC/Master port in the middle of the
connector plate while the Slave port resides on the left, as shown on the drawing below.

There are two possible network topologies- one involving the TR4020 Terminals only;
and the one comprised of a single TR4030 and several TR4020s.

TR4020-only network. On a daisy-chain network consisting of TR4020 Terminals only,
the serial cable runs from the Slave port of one Terminal to the PC/Master port of the Next
Terminal. PC (Host) computer connects to the PC/Master port of the very first Terminal like
shown on the picture below.

To next TR 4020

#3 #2 #1

TR 4020TR 4020TR 4020
To PC

TR4030+TR4020 network. On the network with TR4030 Terminal, the final connection
between the Terminal #1 and the PC is via the Ethernet Local Area Network (LAN) network
as shown on the drawing below. The TR4030 is effectively plays a role of a “gateway”- it
routes the data from the PC to itself and the daisy-chain RS232 network “behind” it. The data
arrives to the TR4030 in an encapsulated form- it is embedded in the standard UDP datagram
(UDP protocol is a part of the standard set of TCP/IP communications protocols).

To next TR 4020

#3 #2 #1

TR 4030TR 4020TR 4020
To Ethernet hub

With the daisy-chain network, you needn’t assign a unique network number (network
address) to each Terminal on the network (this is not to be confused with the IP-address of
the TR4030- it still must be assigned one unused IP-address for the LAN to work correctly).
The TR4020 communications protocol is organized in such a way that the Terminal closest to
the PC on the TR4020-only network (or the TR4030 on the TR4030+TR4030 network) has a
network number of 1 (rightmost Terminal on the drawings above). Next Terminal on a daisy-
chain is #2, then #3 and so on.

Because of this automatic address resolution, the TR4020 daisy-chain network is free
from network number conflicts that plague “bus” networks like RS485 (having two Terminals
with the same network number typically leads to communications conflicts because both
Terminals are trying to respond to commands from PC at the same time). The tradeoff is that
the number of Terminals on a daisy-chain network cannot be very large. Each “leg” of the
network introduces a small delay in data transmission (about 0.7ms one way). The further
away the addressed Terminal is from PC (LAN), the longer it takes for the command to travel
to it and for the reply to get back. The maximum practical number of Terminals on one daisy-
chain network has been determined to be around 20 which should be enough for most real-

 6

life applications. Nevertheless, the maximum number permitted by the TR40xx
communications protocol is 72 and even this can be increased upon request.

2.2. Communications parameters and wiring

Communications parameters for the RS232 daisy-chain network are fixed at 38400-8-
N-1, RTS/CTS handshaking and cannot be changed (to avoid possible malfunction caused
by two Terminals being preset differently). Note that RTS/CTS handshaking is necessary.
Other lines (DTR, DSR, etc.) are not used.

Communications cables used must be 9-pin, Male-to-Female, and of “direct” type.
“Direct” means that pin 2 on the Male side is connected to pin 2 on the Female side. Same for
pins 3, 7 and 8. Here is the interconnection table:

Male side (DB9 conn.) Female side (DB9 conn.)

Pin2 Pin2
Pin3 Pin3
Pin5 Pin5
Pin7 Pin7
Pin8 Pin8

The PC/Master port of the TR4030 is a standard UTP Ethernet port.

2.3. Using a terminal software to manually test communications

The TR4020 communications can be tested with a standard “terminal” software. This is
the software that allows you to send and receive data via PC’s COM port. Quick-testing the
TR4030 is quite complicated as it involves sending and receiving UDP datagrams. There is
no universally available software that can perform this function.

Popular terminal programs are Term95, QMODEM, and HyperTerminal. The latter is
especially widespread because it comes as a standard part of a Windows95/98 package. For
this reason all examples below assume that you are using HyperTerminal. It can be found in
a Start/Programs/Accessories/Communications/HyperTerminal of your Windows95/98. If
it is not there, then you need to install it. Open Start/Settings/Control Panel and choose
Add/Remove Programs (be sure to have your Windows distribution handy, you will be asked
for it). In the Add/Remove Programs Properties click on Windows Setup tab. Next, choose
Communications from Components list and press Details. In the Communications
window , select HyperTerminal (it must be “checked”) and press OK twice. You will be asked
to insert Windows95/98 CD if necessary. The rest of the installation will be finished
automatically.

Once the HyperTerminal is on your System, perform the following steps:
• Attach at least one TR4020 to the free serial port of your PC. Note, that the serial

cable should run to the PC/Master port of the TR4020 (it is the middle connector, see
the drawing in Section 2.1)

• Switch the TR4020 on
• Launch HyperTerminal
• When the Connection Description dialog opens, type any string (1 character

minimum) and press OK
• When the Connect to dialog opens, select an appropriate COM port from the

Connect Using drop-down box (for example, “Direct to COM1”)
• When the COMx Properties dialog appears, set communications parameters as

follows: Bits per second: 38400, Data bits: 8, Parity: None, Stop bits: 1, Flow
control: CTS/RTS. Click OK- the HyperTerminal’s main window will appear

• Choose File/Properties from the main menu, the Properties dialog will open
• Click on the Settings tab, then press ASCII Setup button- the ASCII Setup dialog

will open
• In the ASCII Setup dialog, make sure that 2 check boxes are selected (checked):

Echo typed characters locally, and Append line feeds to incoming line ends
• Press OK twice to close dialog windows.

Now you are all set to test communications with the TR4000. Type the string below and

press <Enter>. Make sure your input entire string correctly, without any corrections- the

 7

TR4020 does not understand keys like <Backspace>. If you make a mistake, start over from
the beginning of the string. Here is the test string:

ll11Eteststring
The first character is a so-called STX (start of transmission). You send it by pressing

<Ctrl>-. STX appears on the HyperTerminal’s screen as a little smiley face. It is used to
indicate the beginning of a data packet. The end of packet is marked by the CR character.
This character is invisible and is send every time you press <Enter>. Thus, actual data packet
sent to the Terminal is:

STX 1 1 E t e s t s t r i n g CR

If you’ve set and typed everything correctly, then a reply from the Terminal should

appear under your command as follows:
ll11Ateststring
Just like your command packets, reply packets begin with STX and end with CR.

Although invisible, the CR is still there.
So, what does the above message exchange means? Immediately following the STX

character in your command packet is the destination address. “1” means that the Terminal
closest to the PC is addressed (first Terminal). Next character is a source address. It should
be set to exactly the same value as the destination address. Next, there is a command code
(“E”). Command codes can consist of one or two characters. This particular command means
“Echo”. When the TR4020 Terminal receives this command, it sends back whatever data is
found between “E” and CR. In the above example, the “teststring” string followed. That is how
this string is also present in the reply from the Terminal.

What about reply packet? Immediately following STX character is a destination byte. It
is supposed to be “1”. Next, there is a source byte that must also equal “1”. Details of why this
is so are provided in the Section 2.4. Next goes reply status code. It informs you of the
command processing status (result). “A” means that command was completed successfully.
The rest of the packet is a copy (echo) of the original data you have sent.

Echo command doesn’t do much of a useful work. It is there solely for testing purposes.

2.4. Addressing on a daisy-chain network

If you are wondering by now why destination and source addresses are like they are
(especially in reply packets) then look no further- this Section will provide a detailed
explanation for this.

As mentioned earlier, the network numbers for TR40xx Terminals need not be
assigned- they “happen naturally”. The Terminal closest to the PC on the TR4020-only
network or the TR4030 on the TR4030+TR4020 network always has the network number of
1. Next Terminal is 2, and so on (up to 72 Terminals).

Here is how addressing mechanism works. Each command packet has a destination
address (addresses start from 1). Supposing, there is a command packet that must reach the
Terminal #3 (see the drawing below):

#1#2#3

PC (or LAN)
3

32211

3

3

-1-1
Process

3333

Original command packet from the PC will have its destination address set to 3 (once

again, destination address is the character immediately following STX, which is represented
by “ll ” here. Also shown is a source address, but it is not used until reply needs to be sent
back to the PC.

 8

The algorithm each Terminal follows when having received the command packet from
the PC (Master) is as follows: if the destination address of the packet equals 1, then the
packet is intended for this Terminal. If it is more than one, then this packet must be
retransmitted (routed) to the next Terminal. In the example above, the Terminal #1 receives
the packet, evaluates the destination byte (3) and finds out that this packet must be
retransmitted. The Terminal then sends this packet out through its Slave port. Prior to doing
this, the Terminal #1 subtracts 1 from the destination address. Hence, when Terminal #2
receives this very packet, the destination address equals 2 already.

On having received the command packet, the Terminal #2 evaluates the destination
address, finds out that this packet must be retransmitted, subtracts 1 from the destination
address, and sends the packet out through its Slave port.

By the time the Terminal #3 gets the packet, this packet’s destination address is already
reduced to 1. Therefore, Terminal #3 accepts this packet for processing. This is how
command packet with destination address 3 gets processed by the Terminal #3.

The situation with reply packets is similar. When preparing a reply, the Terminal #3
copies the source address of the command packet into the destination address of the reply
packet. It also copies the same number into the source address of the reply packet. Source
address of the reply packet is not used for routing, but it can be utilized on the PC side to
check whether the reply packet have really originated from an addressed Terminal.

Here is how the reply packet travels back to the PC:

#1#2#3

PC (or LAN)
1

12233

3

3

-1-1
Process

3333

As reply hops from Terminal to another Terminal, its destination address is getting

decreased at each leg. By the time it reaches the PC, the destination address is supposed to
be 1. Source address of the reply packet remains the same- it equals the destination address
of the original command packet, reply to which this reply packet represents. This fact can be
used by the PC software as an additional check measure. If the reply from the Terminal
contains unexpected destination and source addresses, then this packet should be discarder
as erroneous. To summarize:

• Destination address of the reply packet must always be 1
• Source address of the reply packet must always equal destination (and source)

address of the command packet

2.5. Broadcasting packets

So far, nothing has been said about what happens if you send out a command packet
with its destination address set to 0. This is a so-called broadcasting address. Such
broadcasting packets are processed by all reachable Terminals on the network. Commands
sent in broadcasting mode are never replied to (having Terminals reply to them would lead to
many Terminals talking at the same time).

Because broadcasting commands are never replied to, their use is somewhat limited.
Obvious limitations are:

• You cannot receive any data from any Terminal when you are using a broadcasting
address. Again, this is because Terminals never reply to such packets (although they
do process them)

• Next, you cannot even make sure that your broadcast has reached all Terminals on
the network (again, because there are no replies from individual Terminals).

Broadcastings commands can be used when you need to perform some action quickly-
they spare you from the necessity to send the same command to all Terminals one by one.

 9

This can come handy- especially if you are typing all commands manually, using a software
like HyperTerminal.

Section 3. Command and reply packets format

Now that you are familiar with the general style of the TR40xx communications, it is

time to provide a “strict” description of command and reply packets.

3.1. Types of packet encapsulation
All TR40xx daisy-chain packets start with STX character (ASCII code 2, entered by

pressing <Ctrl>- in HyperTerminal and looking like a little smiley face on the PC screen).
As for the packet endings, there are two possible choices:

• CR character (ASCII code 13, entered by pressing <Enter>)
• ETX (ASCII code 03, entered by pressing <Ctrl>-<C> and looking like a little black

rectangle approximately half the height of a normal character)
Until now, all examples have used the CR character to mark the packet end. Using ETX

differs in that packets with ETX ending are expected to have a checksum and length fields.
Together, these two fields form four check characters that reside in the packet immediately
following all packet data and preceding the ETX character. Check characters can be used to
verify packet integrity and protect against noise, transient conditions on the network and other
disruptions.

Why have two packet encapsulation options? This was done to ease the manual
programming of the Terminals while leaving you the possibility of creating a robust PC
software:

• When typing the TR40xx commands manually using the HyperTerminal, it is not
convenient for you to calculate the check character values for every packet you are
sending

• When creating PC software, you can go with “protected” packets to improve
communications reliability.

As a rule of thumb, the TR40xx always replies with the same type of reply packet as the
type of command packet being replied to: if you send a “protected” command packet, then the
Terminal will answer with a “protected” packet as well. If you have used a “simple” command
packet, then the Terminal will reply with a “simple” reply packet too. There is a single
exception to this rule, however:

When the TR40xx is in the Programming Mode, it responds with a “Busy” (“B”) status
code to any packets sent by the Terminal (see Section 4.2). Reply packets with “Busy” reply
code are always of a simple type, regardless of the type of command packet being replied to.

In general, it is not recommended to base your assumptions about reply packet type
basing on the type of command packet you send. Your software should always check the last
character of the reply packet (CR or ETX) in order to determine reply packet’s type.

3.2. Structure of a simple packet (without check characters)

Simple packets have STX, destination address, source address, packet body, and CR:

STX Dest. Src. Packet body CR
O2H ‘3’ ‘3’ ‘E’ ‘A’ ‘B’ ‘C’ 0DH

 33H 33H 45H 41H 42H 43H

Example above shows an “Echo” command for Terminal #3. It is important to

understand, that “3” is an ASCII character 3, not a code 03H. Actual code, therefore, is 33H
(ASCII code for the character “3”). There is a reason for this: no character between STX and
CR can be allowed to occasionally become equal to 02H (STX) or 0DH (CR). If this was
allowed, then the receiver of the packet would be unable to distinguish between the special
characters marking the beginning and end of packets from characters within packets.

For the above reason (and also to simplify manual input in programs like
HyperTerminal), both destination and source addresses start from code 30H (ASCII for “0”).
Want to address Terminal #6? Send out the code 30H+6H=36H (i.e. ASCII “6”).

As was mentioned earlier, the TR40xx communications protocol allows up to 72
Terminals to be daisy-chained. This means that the destination and source character codes
can fall outside of “0” to “9” range. For example, if you need to address the Terminal #12 then

 11

the destination character code should be 30H+12=3CH. This is an ASCII code for the”<”
character!

This may seem to be extremely inconvenient at a first glance. However, consider the
following:

• First 9 Terminals are addressed using convenient “1” to “9” characters. It is highly
unlikely that you are playing with a network of more than nine TR40xxs using just
HyperTerminal and your fingers

• If you are creating some sort of a PC program to handle the TR40xx communications,
then this addressing codes are very easy to implement. All you have to do is take the
number of the Terminal being addressed and add 30H as a base.

3.3. Structure of a protected packet

Protected packets are different in that they have a checksum and length fields in their
body, and that they end with ETX character:

STX Dest. Src. Packet data Checksum Length ETX
02H ‘8’ ‘8’ ‘E’ ‘A’ ‘B’ ‘C’ ‘0’ ‘B’ ‘0’ ‘8’ 03H

 38H 38H 45H 41H 42H 43H 30H 42H 30H 38H

 45H+41H+42H+43H=10BHà0BHà’0’, ‘B’ 08à’0’,’8’

The checksum field immediately follows the packet data and is calculated as follows:

• First, the codes of all data characters in the packet are summed up. Data characters
are all characters except STX, destination, source, checksum and length fields, and
ETX

• Next, only the least significant byte (LSB) of the checksum is evaluated, all higher
bytes are thrown away

• Finally, a HEX string representation of a checksum byte becomes a 2-character
checksum field

For a packet above, the packet data is comprised of “E”, “A”, “B”, and “C” characters.
The sum of their ASCII codes is 10BH. The LSB of this value is 0BH. Thus, the checksum
field consists of 2 characters: “0” and “B”. Once again, these are not codes, these are ASCII
characters. Actual ASCII codes of these characters are 30H and 42H.

The length field records the length of all fields preceding this field except STX. This
includes destination, source, packet data, and both checksum characters. For the example
above, the length equals 8. The length is recorded just like the checksum- as a 2-character
Hex string: “0” and “8”.

3.4. Additional notes on packet integrity protection

Some of our Customers have asked us why we had chosen to protect the data packets
with a combination of the checksum and length fields. We were repeatedly told that there are
other reliable industry solutions like CRC-16 that can provide very good data protection.

There are two reasons why we haven’t settled on a standard CRC-16 check field:
• CRC-16 requires a lot of processing power. The TR40xx would have had to spend as

long as 3 milliseconds on a CRC-16 calculation (or verification) of every data packet.
This may seem like a very short time, but multiplied by a number of
commands/replies needed to download entire database contents, for instance, this
would have resulted in an extra minute or two needed to complete the upload task
(app. 30% overhead!)

• CRC-16 is a very good choice for situations where random data errors may occur.
This is not the case with modern RS232 lines. Under regular Windows environment,
the most common error is “data overrun”. This means that some packet bytes get
lost. Having a combination checksum/length check fields is a fast and efficient way of
detecting overruns.

3.5. Maximum packet length and allowable character codes

Maximum command or reply packet length including the “wrap” (STX, ETX/CR) cannot

exceed 255 characters. For protected packets (which are longer), this leaves 246 characters

 12

for the packet data. All character codes within a packet must be in the 01H…7FH range,
excluding STX (02H), ETX (03H), and CR (ODH), since these characters are used for packet
encapsulation.

3.6. TCP/IP encapsulation

For the TR4030+TR4020 network, Reply and Command packets travel between the PC
and the TR4030 Terminal within the UDP datagram. The TR4030 plays the role of a gateway
between the TCP/IP network and the RS232 daisy-chain network “behind” the TR4030.
Arriving command packets are stripped of all UDP and IP wraps and sent out to the daisy-
chain network. Replies are wrapped and sent out to the PC as UDP datagrams.

TCP/IP encapsulation is straightforward: entire Command and Reply packets including
STX, ETX, CR, etc. are transmitted as UDP data. One UDP datagram is generated for each
Command or Reply packet.

Section 4. Command groups. Reply status codes

Starting from this Section, the wrap part of all packets will sometimes be omitted from

our discussion. This means, that STX, destination, source, checksum and length fields, and
CR/ETX will not be shown or mentioned unless necessary. Instead, the discussion will
concentrate on the packet data itself. Once again, the packet data is everything between the
source address and the CR for simple packets or the source address and the checksum field
for protected packets. For the packet below, the data portion is “AABC”

STX Dest. Src. Packet data CR
O2H ‘1’ ‘3’ ‘A’ ‘A’ ‘B’ ‘C’ 0DH

 Packet data

4.1. Command and reply packets
All packets on the TR40xx network are either command or reply packets. Command

packets carry the command code and some relevant data if applicable. Reply packets carry
the reply status code and also may return some data.

It is quite impossible to discuss the TR40xx’s commands without getting familiar with
the range of possible replies (i.e. error situation) first. For this reason, all available reply status
codes will be explained ahead of commands.

4.2. Reply status codes

Reply status code is a single ASCII character. It tells you whether the command you
have sent to the TR40xx was processed successfully and, if not, what was the reason for that.
Reply status code always follows the source field in the reply packet. Table below lists all
available reply status codes:

A 41H Command was completed successfully. If the kind of command being replied

to is supposed to return some data, then this data will immediately follow “A” in
the reply packet. “A” is the only status code that may be accompanied by some
data from the Terminal

D 44H Access denied. This happens when you are trying to change some data that is
read-only by nature, or if you are attempting to change a password-protected
data without having logged in first

F 46H Command execution failed. This may be caused by hardware malfunction or
data corruption inside of the Terminal

I 49H Invalid command. Either command code or data portion of the command packet
is invalid. This does not include check error

C 43H Check error. Command packet’s checksum/length field verification failed on the
Terminal side

E 45H End. This reply status code has two meanings. When you are adding a records
to the datatable of the TR40xx, this code means that the table is full and new
record cannot be added. When you are retrieving datatable records, this code is
generated when the end of table is reached

N 4EH Command is not applicable or data not available. This code is rather difficult
to explain in details for now. In general, it means that the data you are looking for
does not exist or apply to current situation. It will all become clear when you learn
about Item Lookup (“IL”) and Item Default (“ID”) commands

K 4BH Key violation. Some datatables may contain key fields. No two records in the
datatable are allowed to have identical key fields. This code is generated when
you attempt to add a record whose key field’s content duplicates that of another
existing record in this datatable

B 42H Busy. The Terminal is in the Programming Mode and your command cannot be
processed. This is because concurrent Terminal programming via Programming
Mode and online session is not allowed

4.3. Types of TR40xx commands

All TR40xx commands can be divided into 4 groups:

 14

• Login commands. This group is used to login and logout, also get current login
status. Login is a process in which you gain access to the Terminal’s internal data by
supplying a valid login password. Most of the TR40xx’s internal data is password
protected for write operations. This means that in order to change this data, you need
to login first. Some data cannot even be retrieved when not logged in

• Data retrieval and manipulation. Commands in this group are used to get the Time
and Attendance data accumulated by the Terminal. There are also commands to
erase the data, restore it back, and some others

• Item manipulation. All TR40xx functioning parameters (like current date and time,
login password, bells schedule, default shift, etc…) are referred to as “Items”. There
is an extensive set of commands that not only allow you to manipulate these Items,
but also to “learn” about them. Learning means that there is a way to find out what
particular items a given Terminal supports

• Miscellaneous. Included in this group are several “other” commands that are rather
hard to classify

Sections below discuss all four command groups in details.

Section 5. Login commands

Commands in this group include:

All commands and replies are shown without packet wrap (STX, destination, source, etc.)
Cmd Usage Reply Comment
LI LI pp…p A | D | F Log In. Log into the Terminal
LO LO A Log Out. Log out from the Terminal
LS LS A s Login Status. Check current login status
Pp…p login password (can be an empty string)
s login status: “I”-currently logged in, “O”- currently logged out

5.1. Why login?

Most of the TR40xx’s internal data is password protected. You need to log into the
Terminal first in order to gain access to the protected data. Login is a process in which you
gain access to the Terminal (“open” it) by supplying a valid login password.

Having to login onto the Terminal in order to change (and in some cases even view) the
data protects the Terminal’s functioning parameters and the Time and Attendance data from
unauthorized access and/or altering.

Login plays another important function that should not be overlooked. The TR40xx
features a so-called Programming Mode, which allows the User to setup the Terminal using
its keypad and LCD. For obvious reasons, working in the Programming Mode and accessing
the Terminal online at the same time is not allowed (to avoid “competition”- it’s when the User
at the Terminal and the online User both try to alter the same data). Furthermore, the User at
the Terminal has a priority over the online User- once Programming Mode is entered, the
Terminal cannot be accessed online- all commands received while the TR40xx is in the
Programming Mode are discarded and replied to with a “B” (Busy) code.

Now, when you are accessing the TR40xx online, you cannot prevent somebody else
from entering the Programming Mode. What you can do is let the User at the TR40xx know
that online session is in progress. With you logged in, the User at the Terminal who is about
to enter the Programming Mode will get a warning message first. The message looks
somewhat like this:

Online session is in progress!
Entering Programming Mode will
abort it. Continue still?
Yes No

Mind you, the User at the Terminal can still kick you out, but at the very least he will be

notified of your presence. For this reason, any online session with the TR40xx should always
start with login.

5.2. Logging in and out

The TR40xx always powers up in the logged out mode. When exiting the Programming
Mode, the Terminal also resets to “logged out”.

When not logged in, you may still have a read access to some of the TR40xx’s internal
data. To gain full access to the Terminal you need to login first. Use the Log In command and
a valid password.

You need to login even if your password is not set (i.e. it is an empty string). In this
case, you type in the Log In command without any password string.

Access denied (“D”) reply status code is returned when login password is incorrect. It is
also noteworthy, that Log In command may fail (“F” reply). This happens when the TR40xx’s
internal FLASH disk fails or disk data becomes corrupted. Terminal Initialization is the only
solution in this case (see TR40xx User’s Manual, Appendix D).

Currently, the TR40xx doesn’t have login timeout. This means, that once having
entered the logged in mode, the TR40xx will remain in it indefinitely, unless switched off or
forced into the Programming Mode.

 16

To protect the Terminal’s internal data, always finish your online session with Log Out
command.

5.3. Checking current login status

PC software you are creating may want to check current login status prior to attempting
certain commands. This way you can make your software user-friendlier. Login Status
command returns “I” in case the Terminal is in the logged in mode, or “O” if otherwise:

5.4. How do I set the login password?

Notice that this group of commands does not include any command to set (modify) the
login password. This is because login password is just another Item (programmable
parameter) that can be accessed and modified using Item manipulation commands (see
Section 7).

5.5. Sample online session

Here is how a typical online session involving Log in and Log Out command might
proceed. Initialize the Database (“RI”) command is used to illustrate the access denied
situation:

Sample sessions are shown with packet wraps (i.e. you may type commands below right into the

HyperTerminal). They assume that you are working with Terminal #1 (Destination=1)
PC: ll11RI You want to erase entire Time and Attendance database

T: ll11D Umps! Access denied
PC: ll11LIPass1 You login (your password is “pass1”)

T: ll11D Denied again! This is because the password is case-sensitive!
PC: ll11LIpass1 Try to login once more

T: ll11A OK this time
PC: ll11RI Now, erase this database!

T: ll11A Finally, it’s gone
PC: ll11LS Check login status for no special reason

T: ll11AI “I”- logged in, as expected
PC: ll11LO Log out

T: ll11A Done
PC: ll11LS Check logout status once again

T: ll11AO “O”- currently logged out
l is STX (02H, <CTRL>- under HyperTerminal), all packets end with <CR>

Section 6. Data retrieval and manipulation commands

Commands in this group include:

All commands and replies are shown without packet wrap (STX, destination, source, etc.)
Cmd Usage Reply Comment
RN LN A nn…n | D | F Number Of Records. Open read transaction (if not

opened), get the number of records to read
RG RG A rr…r | E | D | F Get Record. Open read transaction (if not opened),

fetch next record
RH RH A Confirm Record. Confirm record acceptance by the

PC
RA RA A | D Abort Read Transaction. Close read transaction

without updating the database (without marking
fetched records as “old”)

RC RC A | D | F Commit Read Transaction. Close read transaction
and update the database (mark fetched records as
“old”)

RO RO A | D | F Delete Old Records from the database
RR RR A | D | F Reset Old Records. Make all records in the database

look as “new”
RI RI A | D Initialize The Database . Delete all records and/or

restore the database in case it was corrupted
RM RM A | D Recover The Database . Make the database appear

as if it was 100% full with records
nn…n number or records remaining to be read in the current read transaction (max. 99999)
rr…r database record (TAB-delimited fields), see Appendix B for current record format

6.1. Time and Attendance database

The TR40xx stores the Time and Attendance data in its internal database memory. The
data consists of records that follow each other in exactly the same order that they were
created in. Associated “housekeeping” mechanism “remembers” the total amount of records
in the database as well as the amount of “new” records.

“New” data is the data that was added since the last time you have uploaded the
database during an online session or copied the data onto the Floppy Disk. When you are
uploading the database data (using Get Record and Confirm Record commands as
explained in 6.3), you are only getting the new data by default. Nevertheless, the old data (i.e.
the data that you have uploaded online or saved to disk at least once before) is still there and
you can re-read it again by “resetting” it. Reset Old Records command makes all database
data look like “new”. Subsequent use of Get Record and Confirm Record commands will let
you upload entire database contents.

E
nt

ire
 d

at
ab

as
e

ca
pa

ci
ty

N
ew

 d
at

a
O

ld
 d

at
a

“R
I”

 to
 e

ra
se

, “
R

M
”

to
 r

ec
ov

er

“R
O

” t
o

er
as

e
“R

N
”

to
 in

qu
ire

nu
m

be
r o

f r
ec

.

Beginning of data

“RR” to reset

New data will be
added here

Next record you will fetch
with “RG” command

Other commands available allow you to:
• Delete Old Data to free up some database space

 18

• Initialize The Database . This command completely initializes the database. It is
useful in case you want to delete all records or restore database functionality after the
database went “bad”

• Recover The Database . This command makes the database appear 100% full with
records. This is useful when the database goes “bad” and you desperately need to
retrieve some records. More details on this command usage are provided in 6.6.

6.2. Read transactions

Data upload takes place in a so-called read transaction. The read transaction is opened
automatically on the first time you use the Get Record command to retrieve the first unread
(new) record or the Number Of Records command to determine the number of records still
waiting to be retrieved in the current read transaction.

When the read transaction is opened, a database snapshot is made. Snapshot means
that the status of the database on the moment of transaction opening is memorized. Once the
read transaction is opened, the number of records that you can download during this
transaction will remain unchanged, even if new records continued to flow into the database
while your read transaction was in progress.

You retrieve the database records one by one using the Get Record command
followed by the Confirm Record command. Get Record fetches the next unread (new)
record of the database. Confirm Record tells the TR40xx that the record just fetched was
indeed received by the PC. If we represent the database table as a list of records with a
pointer, pointing at the next unread record in the list, then Get Record command’s function is
to fetch the record currently pointed at by the pointer, while Confirm Record command’s
function is to advance the pointer to the next unread record (but no further than that).

This record-by-record upload method is bulletproof. It makes sure that no records ever
get “lost” on the way from the TR40xx to the PC. If your PC fails to receive some record, it
may send the Get Record command again to retrieve the same record. And the Confirm
Record command may only advance the pointer no further than the next unread record, no
matter how many times you repeat this command between two subsequent Get Record
commands.

You retrieve records “in a loop”, until your Get Record command is replied to with the
“E” (End) status code. This will mean that you have uploaded all new records already. Note,
that “E” status code can only be returned as a reply to the Get Record command. Confirm
Record always returns “A”.

For the database to get updated, you need to explicitly close the read transaction. This
is done by using the Commit Read Transaction command. When you issue this command,
all records that you have uploaded and confirmed (!!!) in this read transaction will be marked
as “old”.

You can also abort the read transaction by using the Abort Read Transaction
command. Transaction will be closed quietly without marking any new records as old.

Read transaction is also aborted automatically by the following commands: Delete Old
Records, Reset Old Records, Initialize The Database , and Recover the Database . All of
the above commands will safely abort the transaction before executing.

The Number Of Records command is not really necessary to use. You may always
repeat the Get Record-Confirm Record commands in a loop until you get the “E” reply
status code. However, you may need to know the number of records you are about to upload
beforehand. You need this, for example, to be able to display the progress bar on the PC
screen (showing the percentage of upload done so far).

Note, that the Number Of Records command always returns the number of remaining
new records to be fetched in the current read transaction. Every time you get a record, the
number is decreased by 1. Therefore, in order to determine the total number if records in the
current read transaction correctly, you must open the read transaction with the Number Of
Records command.

6.3. Typical upload scenario

The block diagram below illustrates a typical database data upload procedure. Note,
that the first command issued is the Abort Read Transaction. This is always a good practice
to start from aborting the old transaction. This way you can make sure that your next Number

 19

Of Records or Get Record command will really open a fresh transaction, not continue the
existing one.

The diagram below is simplified. It doesn’t show the reply analysis for every command
issued to the TR40xx.

Send “RA”

Send “RG”

Save record

‘A’‘E’

Send “RC”

END

BEGIN

Send “RH”

Analyze
reply

Send “RN”

Seriously recommended!

Optional

Don’t forget to
Commit!

Let us now illustrate the above diagram by a sample online session. The session
assumes that you are logged in already and that the database contains three records:
“record1”, “record2”, and “record3”. We deliberately use a simplified record data. The real
data format can change in the future, as TR40xx gets more and more functions. However,
data retrieval method will be kept the same. Current database data format can be found in the
Appendix B.

Sample sessions are shown with packet wraps (i.e. you may type commands below right into the

HyperTerminal). They assume that you are working with Terminal #1 (Destination=1)
PC: ll11RA Abort whatever read transaction might be in progress

T: ll11A Done
PC: ll11RN Open read transaction, inquire total number of records

T: ll11A3 Have three records
PC: ll11RG Fetch a record

T: ll11Arecord1 Got first record
PC: ll11RH Confirm first record

T: ll11A Terminal acknowledged
PC: ll11RG Fetch a record

T: ll11Arecord2 Got second record
PC: ll11RH Confirm second record

T: ll11A Terminal acknowledged
PC: ll11RN Inquire the number of records once again

T: ll11A1 Notice that the value reflects the number of records yet to be read
PC: ll11RC Close the transaction

T: ll11A OK
PC: ll11RG Reopen the transaction

T: ll11Arecord3 Got the third record
PC: ll11RG Repeat

T: ll11Arecord3 Still got the same (third) record
PC: ll11RH Confirm third record

T: ll11A Terminal acknowledged
PC: ll11RG Attempt to fetch next record

T: ll11E No more records

 20

PC: ll11RA Abort the transaction
T: ll11A OK

PC: ll11RN Inquire the number of records again
T: ll11A1 Still one record remaining because last transaction was aborted

l is STX (02H, <CTRL>- under HyperTerminal), all packets end with <CR>

6.4. Understanding concurrent log retrieval and record adding

The TR40xx allows you to retrieve the database data while new records are being
added to the database. Records added past read transaction opening moment will not be
visible in the current transaction. You need to close (commit or abort) and reopen the
transaction in order to be able to see the updated number of records. This mechanism
prevents the read transaction from going on indefinitely (due to new record addition).

6.5. Cleaning up the database space

Closing the read transaction updates the read pointer position but it doesn’t actually
delete old records from the database. If these records are not deleted explicitly, the database
will eventually become full and unable to accept new records. Use the Delete Old Records
command to reclaim database memory space. You may also use the Initialize The Database
command to delete all database records.

6.6. Database failures and recovery

Despite all safety measures taken to preserve the database content, it is theoretically
possible that the database will get corrupted. Internal database housekeeping is able to
detect this situation. Should this happen, the Fail (“F”) status code will be returned on any
database-related command except the ones described below. Corrupted database is
inaccessible unless repaired. The database can be repaired in 2 ways:

• Initialize the Database command completely re-initializes the database. The
database appears to have no records after that

• Recover the Database command re-initializes the database and makes it look like
100% of its capacity is occupied.

Both commands do not modify actual contents of the database FLASH memory in any
way. They simply adjust the housekeeping data (read and write pointers, etc…). This is
similar to file deletion on the PC: only file record gets modified, the sector data itself is not
immediately erased (although it may be overwritten by a fresh data at any time).

As mentioned earlier, Recover The Database command makes the database look like
it is 100% full. You can subsequently retrieve all the records in the database using the usual
Get Record-Confirm Record command pair. Naturally, the data retrieved may not be entirely
consistent. By the time you start recovery, some new records may have already overlapped
the old ones. Some FLASH memory locations may be in the erased state and contain no data
at all. Despite these limitations, Recover The Database command gives you the possibility to
recover at least some data. As for the possible garbage output, the TR40xx takes care of this:
it checks every record prior to sending it out. If some fields of the record appear to be wrong,
then their content is automatically substituted for a default one (see Appendix B for more
details).

6.7. How do I get other database statistics (like total number of records)?

The database-related command group only contains a command to inquire the number
of new records in the current read transaction. All other statistics are provided in the form of
read-only Items and are retrieved just like the values of other TR40xx’s parameters (see
Section 7 for more details). These database-related Items’ values can be read out in a non-
intrusive manner. This means that reading them does not abort the read transaction in
progress (just like adding new records does not abort the read transaction). Database
statistics always reflect the latest database situation, not the one that existed on the moment
the read transaction was opened.

Section 7. Item manipulation commands

Commands in this group include:

All commands and replies are shown without packet wrap (STX, destination, source, etc.)
Cmd Usage Reply Comment
IC IC A cc…c Item Count. Total number of

Items on the Terminal
IL IL mm…m A nn…n | I | N | F Item Lookup. Find Item number

by name
I? I? rr…r A ii…i | I | N | F Item Info. Get Item’s info string
IU IU A | F Update Items that work out of

RAM
Commands applicable to “Array” Items only (VAL, STR, TIME, DATE types)

IS IS rr…r ss dd…d A | D | I | F | N Item Set. Set the Item to a new
value

IG IG rr…r ss A dd…d | D | I | F | N Item Get. Get Item’s value
ID ID rr…r A dd…d | D | I | N Item Default. Get default value

for this Item
Commands applicable to “Table” Items only (TAB type)

I* I* rr…r tt A ff…f | I | N | F Field Info. Get info string for one
field of a datatable

IT IT rr…r A | I | N Item Top. Reset table record
pointer to the top of the datatable

IF IF rr…r A dd…d | D | I | E | F | N Item Fetch. Get next record of a
datatable

IH IH rr…r A | I Item Confirm. Confirm the
reception of a datatable record

IA IA rr…r dd…d A pp…p | D | I | E | F | N Item Add. Add record to the
datatable

IE IE rr…r pp…pàdd…d A | D | I | F | N Item Edit. Edit a datatable
record

IR IR rr…r pp…p A | D | I | F | N Item Remove . Delete a
datatable record

cc…c Total number of Items found on the Terminal (1-100)
mm…m Item name (string, case sensitive)
nn…n Item number (0-99)
rr…r Item reference. Can be supplied either as a name, or as a number. When supplied as a

name string, it must be enclosed in quotation marks (i.e. “TIME”, “VERSION”). When
supplied as a number, it must always be in a 2-digit form (i.e. 01, 15, 99)

Ii…I Item info string. Consists of several TAB-delimited fields describing Item’s properties
ss Member. Must always be in a 2-digit form (i.e. 00, 12)
dd…d Item’s data. It can be a single value or a record string with TAB-delimited fields
tt…t Field number. Must always be in a 2-digit form (i.e. 00, 01)
ff…f Field info. Consists of several TAB-delimited fields describing one data table’s filed
pp…p Record number. Absolute record position in the datatable

7.1. The concept of Items

The TR40xx has a number of functioning parameters that are referred to as “Items”.
Each item can be as simple as a single value, or as complex as a database table. Some
items are read-only, and some can be written to. Items may also differ in “access level”, i.e.
whether or not you need to be logged in order to read or modify them.

The TR40xx provides two methods for Item manipulation:
• Traditional. You know (by reading this Manual) what Items the Terminal is supposed

to have, so you write your software to work with this pre-fixed set of Items. This
approach is simple and lets you finish your PC software rather quickly. Unfortunately,

 22

it is quite inflexible: you will have to modify the PC software every time some new
Items are added to the new release of the TR4000 Terminal

• Auto-learn. You use a special set of commands to learn about all available Items from
the Terminal itself. This way you can create a kind of “Terminal Explorer” that is
inherently ready to work with any set of Items. This kind of software is more difficult to
create, but it definitely pays to do it: you won’t have to make changes every time we
update our Terminals!

7.2. Properties of Items

This Section discusses all Items except those of table type. Table Items are covered in
7.8-7.10.

Each Item is characterized by a number of properties, namely its type, size (number if
members), access level and update properties.

The following Item types are currently supported (this list may be expanded in the
future!):

• VAL (value). A value can be in the 0…9999 range
• STR (string). A string can have the length from 0 to as many characters as you can fit

into the data packet without exceeding the maximum total length of 255 characters.
All characters in the string must be in the 20H…7FH range or 09H (TAB character)

• TIME. Items of this type return and accept string of a “hh:mm:ss” format
• DATE. Items of this type return and accept string of a “DD:MM :YYYY” format
• TAB (table). Items of this type contain entire datatables within them. See 7.8-7.10 for

complete discussion of datatables.

Each Item (except those of table type) is actually an array. It may contain as many as

100 different values. Each Item is characterized by Size, i.e. the total number of members
within an Item. A lot of Items consist of a single member.

Access rights flags define read and write (get and set) protection separately for each
Item:

• Item may be accessible for read at any time (no login required), only when you are
logged in, or never (write-only Item)

• Item may be accessible for write at any time (no login required), only when you are
logged in, or never (read-only Item)

Some Items, when used by the TR40xx, are copied from the Terminal’s internal FLASH

disk into the RAM on startup. Further references to such Items’ values are made using their
RAM copies. Those Items are said to require update. It is not enough to set their new value. A
special Update command must be executed in order to update these Item’s values in the
Terminal’s RAM.

7.3. Using traditional Item handling method

Let’s start right from the example. Supposing, you need to read and set the TR40xx’s
time. From the Appendix A of this Manual, you learn that there is, indeed, an Item called
“TIME”. Example session below assumes that you are logged in already:

Sample sessions are shown with packet wraps (i.e. you may type commands below right into the

HyperTerminal). They assume that you are working with Terminal #1 (Destination=1)
PC: ll11IG”TIME”00 Get current time

T: ll11A12:30:16 The Terminal returned current time
PC: ll11IS”TIME”0018:00:00 Try to set the time again

T: ll11A Done!
l is STX (02H, <CTRL>- under HyperTerminal), all packets end with <CR>

First, you read about the Item “TIME”. From the Appendix B you learn that this is an

Array Item of type TIME and that it consists of a single value.
The first command (IG”TIME”00) means that you try to get a value (IG) of the Item,

whose name is “TIME”. Even though this Item consists of a single value, you still need to
specify a member (00). This number must always consist of 2 digits, so add a leading 0 if
necessary!

 23

What you get in return is a string representation of this Item’s current value.
Next, you try to change the Item’s value. You send the Item Set command and specify

Item name (“TIME”), subscript (00), and the new value (“18:00:00”).

There is one extra command provided that allows you to fetch Item’s default value.

The sample session below fetches and sets the default value for the “BELLDUR” Item. This
Item is of VAL type, contains 1 member, and its default value is 10:

Sample sessions are shown with packet wraps (i.e. you may type commands below right into the
HyperTerminal). They assume that you are working with Terminal #1 (Destination=1)

PC: ll11ID”BELLDUR Fetch default value
T: ll11A10 Default value is 10

PC: ll11IS”BELLDUR”0010 Try to set this value
T: ll11A OK

l is STX (02H, <CTRL>- under HyperTerminal), all packets end with <CR>

In the Item Default command, notice the absence of the closing quotation mark and
member. Default values exist for the Item as a whole, not for each of this Item’s member.
Therefore, specifying exact member is not necessary. As for the quotation mark, it is not
necessary in cases where no other data follows the name.

Some Items do not have a default name by nature. It is obvious, for example, that
Items like TIME and DATE cannot have any meaningful defaults. Requesting default values
for such Items returns “N” status codes (not applicable/ not available). Finally, you see the
use for this obscure status code that we couldn’t quite explain in 4.2.

All examples below have dealt with single-member Items. It so happens that our

current TR40xx just doesn’t have any real array Items. Nevertheless, the subscript is
reserved, should never be omitted, and will definitely be used in the future. Just as an
example, here is how you set the 99th member of an imaginary Item “ITEM1” (type=STR) to
“ABC”:

This is just an example. It won’t work with the current TR40xx

PC: ll11IS”ITEM1”99ABC Set member 99 of ITEM1 to “ABC”
T: ll11A OK!

7.4. Learning about Items

The TR40xx provides a way to learn about all Items it supports. The Item Info
command fetches a so-called info strings separately for every Item.

The info string consists of several TAB-delimited fields. Here is the string format::

Field Comment
1 Name Item’s name. It’s the same name you use in commands like Item Set, Item

Get, etc.
2 ID Unique ID that you can use to assign a help topic of your PC software’s

online help to a particular Item. ID’s are guaranteed to be unique not only
within a certain Terminal, but throughout entire TR4000 family. We will never
use the same ID for different Items

3 Type Item’s type. This field is a string that can have the following values: “VAL”,
“STR”, “TIME”, “DATE”, “TAB”. This corresponds to value, string, time, date,
and table types. The list of supported types may be expanded in the future

4 Size Number of array members within this Item. It can be in the 1-99 range
5 Flags This field actually consists of several flags that are described below
6 Definition This is a string that can be used to display the Item’s meaning. Your PC

software may print it next to the Item’s value for User’s convenience
7 Help Additional information on the Item’s meaning. Your software may display it on

request, when the User selects the Item or asks for help
8 Selection This field is optional, it may only exist for Items of type VAL. It may consist of

 24

stings one or several semicolon-delimited strings. Each string corresponds to one
possible value of this Item, starting from 0. The purpose is to provide
meaningful selection strings instead of bare values whenever necessary.
Example below will illustrate the usage of selection strings

To better illustrate how info strings can be used in your software, let’s get one string

first, then see how it is utilized in our TR4000 Control Center for Windows. Control Center
is a free open-source software that can be downloaded from out website
(www.proxdata.com).

Example below uses the EXTBRATE (External Scanner Baud Rate) Item. This Item is
of VAL type, it consists of a single member. Basically, this is a selector: every possible value
corresponds to a certain standard baudrate: 0- 1200bps, 1-2400bps, 2-4800bps, 3-9600bps,
4-19200bps. Since 0,1,2,3, and 4 are not just values, but “selections”, it would be nice to
display what they actually mean. This is where selection strings come handy.

Try the following example:

Sample sessions are shown with packet wraps (i.e. you may type commands below right into the
HyperTerminal). They assume that you are working with Terminal #1 (Destination=1)

PC: ll11I?”EXTBRATE
T: ll11AEXTBRATE àà 10170 àà VAL àà 1 àà 41 àà External scanner

baudrate àà Sets the baudrate of external scanner àà 0-1200bps;
1-2400bps; 2-4800bps; 3-9600bps; 4-19200bps

l is STX (02H, <CTRL>- under HyperTerminal), all packets end with <CR>
àà is the TAB character

The first field of Info String carries the name of this Item (“EXTBRATE”). It is followed by

the unique ID (10170). Next is the Type field (VAL). Next field informs us that this Item only
contains 1 member. Next is a Flags field (to be discussed later). Items definition is “External
scanner baudrate”. Help you can display on User’s request is “Sets the baudrate of external
scanner”. Finally, there are several selections, each corresponding to a specific possible
value of this Item.

Every Selection string is guaranteed to start with actual value, followed by hyphen,
followed by comment, i.e. “1-enabled”.

Sample screenshot below illustrates how TR4000 Control Center uses this Info String:

 25

All Items are displayed in a data grid, each Item’s Definition field is at the left column,
and the value is in the right column. EXTBRATE Item is selected for editing, so extended info
about it (from the Help field) is shown under the grid. Current Item’s value is displayed using a
corresponding selection string. In the Edit dialog box, the drop-down displays all available
selections.

7.5. Flags field

Flags field consists of several 1-bit flags:

Bit0 R Read- Item’s value can be retrieved at any time, regardless of login status
Bit1 RP Read Protected- Item’s value can only be retrieved when logged in
Bit2 W Write- Item’s value can be set at any time, regardless of login status
Bit3 WP Write Protected- Item’s value can only be set when logged in
Bit4 --- <This field is currently unused>
Bit5 FU Update required after changing this Item’s value

Note: when both R and RP, or W and WP are set, then R and W take precedence

R, RP, W, and WP flags define the access rights for this Item. Update flag tells you

whether you need to use the Update command after having changed the Item’s value (See
Section 7.2.).

To determine which flags are set for a particular Item, convert the value of a Flags field
to its Binary representation, then check individual bits. For example, the value of the Flags
field for Item EXTBRATE is 41 (decimal). In binary form, it looks like 101001. The following
flags are set: Bit0 (the rightmost one)- R, bit 3- WP, bit 5- FU. This means that this Item’s
value can be retrieved at any time, that you need to be logged in if you want to change this
Item’s value, and that you need to use the Update command to force the TR40xx use the
newly set value. It is that simple! :)

7.6. Using Item numbers instead of names

It may be convenient to use names like EXTBRATE or TIME when setting and getting
Items manually, but you need something different if you want to create an auto-learning piece
of code. You auto-learning program cannot know what set of Items a given Terminal supports
and what their names are, right?

For this reason, all of the TR40xx’s Items may be referenced by number. All commands
that accept Item names as parameter will also accept bare numbers. Item number should
always be formatted to consist of 2 digits, so add leading zero when necessary!

There is an Item Lookup command that helps you find the Item’s number by its name.
Example below illustrates this:

Sample sessions are shown with packet wraps (i.e. you may type commands below right into the
HyperTerminal). They assume that you are working with Terminal #1 (Destination=1)

PC: ll11ILBELLDUR Lookup the number for “BELLDUR”. Notice that there
are no opening and closing quotation marks

T: ll11A5 The number is 5
PC: ll11IG0500 Read this Item’s value. Notice that “05”, not “5” must be

input
T: ll11A10 The value is 10

l is STX (02H, <CTRL>- under HyperTerminal), all packets end with <CR>

Handling Items by their numbers is very convenient when you are writing a piece of
code that displays all the Items in a list, like our TR4000 Control Center does (see
screenshot in Section 7.5.). Our Control Center doesn’t know (or care about) Item names or
what these Items actually mean. All Items are handled formally, using the Info strings. The
Item Count command is used to find out the total number of Items (N), then Item Info
command is used to fetch the info strings for every Item from 0 to N-1.

7.7. A word of caution on using Item numbers

This is so important that we have even put it into a separate Section!

 26

Unlike Item names, Item numbers can change between Terminal versions. We may, for
example, insert a new Item in front of the one that used to go by the number “5”, thus turning
it into “6”. It won’t bother you when you are designing a “smart” software that gets all Items
along with their info strings every time it connects to a certain Terminal. However, if you are
writing a traditional fixed software, then you better avoid using Item numbers. Do use Item
names instead, they are guaranteed to stay the same!

7.8. Tables

Tables are complex Items. Each Table Item contains entire datatable within it. Just like
with “simple” Items, you can learn about tables and their structure.

Each datatable consists of fields. Fields only differ in their type. All other properties
(access level, update) apply to the datatable Items in general, not to individual fields.

Field Info command fetches the info string for a given field of a given table. The Info
string includes:

Field Comment
1 ID Unique ID that you can use to assign a help topic of your PC software’s

online help to a particular field. ID’s are guaranteed to be unique not only
within a certain Terminal, but throughout entire TR4000 family. We will never
use the same ID for different Items

2 Type Item’s type. This field is a string that can have the following values: “VAL”,
“STR”, “TIME”, “DATE”. This corresponds to value, string, time, and date
types. The list of supported types may be expanded in the future

3 Definition Field name that you can display at the caption of the datatable
4 Help Additional information on this field. Your software may display it on request,

when the User selects the field or asks for help
5 Selection

stings
This Info String’s field is optional, it may only exist for data table fields of type
VAL. It may consist of one or several semicolon-delimited strings. Each string
corresponds to one possible value of this field, starting from 0. The purpose
is to provide meaningful selection strings instead of bare values whenever
necessary. Example below will illustrate the usage of selection strings

How to find out the number of fields in a given table? The number is written in this

Item’s info string, in the size field. For all Items other then Tables, this field carries total
number of array members for the Item. For table Items, however, it records the total number
of fields in the table. Example below illustrates the process of learning about the TABDEFEV
(Default Event Table):

Sample sessions are shown with packet wraps (i.e. you may type commands below right into the

HyperTerminal). They assume that you are working with Terminal #1 (Destination=1)
Some Terminal replies in this example have been abbreviated for clarity

PC: ll11ILTABDEFEV Lookup the number for “TABDEFEV”
T: ll11A7 The number is 7

PC: ll11I?07 Get info string
T: ll11ATABDEFEVàà10070ààTABàà2àà41àà… This table has 2 fields (reply abbrev.)

 ll11I*0700 Fetch info string for the first field
 llA20010ààTIMEààTimeààSpecifies… (Abbreviated)
 ll11I*0701 Fetch info string for the second field
 llA20020ààVALààEventààSpecifies… (Abbreviated)

l is STX (02H, <CTRL>- under HyperTerminal), all packets end with <CR>
àà is the TAB character

First, we lookup TABDEFEV Item’s number. Then, we get this Item’s info string and

learn that it is a table, and that the table has two fields. Finally, we use the field Info command
twice to get the field info separately for each field. As it turns out, the first field is of TIME type,
the second one is VAL. Selection strings are available for the second field. The screenshot
below is taken at the moment when the TR4000 Control Center is in the table editing mode.

 27

Once again, every Selection string is guaranteed to start with actual value, followed by
hyphen, followed by comment, i.e. “1-enabled”.

7.9. Uploading table data

Data table contents uploading process is quite similar to the database uploading
process described in 6.3. Two commands, Item Fetch and Item Confirm are used to read
out all records in the specified datatable. Records are fetched in a loop cycle, until the “E”
reply code is returned by the Terminal. An Item Top command is used to reset the datatable
pointer to the top of the datatable. Always reset the pointer prior to rereading the datatable.

All datatable records are returned with TAB-delimited fields. A special record number
field is added automatically as the header of each record. You don’t need to display this field
on the screen, but you do need to store it along with record’s data (in order to be able to
reference a specific record to edit or remove). Records are always fetched in the ascending
order of their respective record numbers, but record numbers may not be consecutive (i.e.
you may get numbers 0,1, than 3). Record numbers may be in the 0-9999 range. The
diagram below illustrates the datatable reading process.

Send “IT”

Send “IF”

Save record

‘A’‘E’

END

BEGIN

Send “IH”

Analyze
reply

A must!

 28

This record-by-record upload method is bulletproof. It makes sure that no records ever
get “lost” on the way from the TR40xx to the PC. If your PC fails to receive some record, it
may send the Item Fetch command again to retrieve the same record. And the Item Confirm
command may only advance the pointer no further than the next unread record, no matter
how many times you repeat this command between two subsequent Item Fetch commands.

Sample session below illustrates the datatable upload process:

Sample sessions are shown with packet wraps (i.e. you may type commands below right into the

HyperTerminal). They assume that you are working with Terminal #1 (Destination=1)
PC: ll11IT07 Reset read pointer to the top of the datatable

T: ll11A OK
PC: ll11IF07 Fetch a record

T: ll11A0àà10:00:00àà1 Record 0 fetched
PC: ll11IH07 Confirm record 0

T: ll11A Acknowledged
PC: ll11IF07 Fetch next record

T: ll11A2àà09:30:00àà0 Record 2 fetched (notice that record numbers are not
consequential)

PC: ll11IH07 Confirm record 2
T: ll11A Acknowledged

PC: ll11IF07 Fetch another one
T: ll11E No more records

l is STX (02H, <CTRL>- under HyperTerminal), all packets end with <CR>
àà is the TAB character

7.10. Adding, editing and deleting records

New record may be added using the Item Add command. Record number needn’t be
supplied- the TR40xx will find and utilize the lowest unused record number automatically.
Thus, if the datatable contained records 0, 1, and 4, then the newly added record will have the
number 2 (then 3, then 5). “E” reply status code is returned when the datatable runs out of
free record space.

Editing and removing records requires a record number to be supplied by the PC. Two
commands used for this purpose are Item Edit and Item Remove . Attempting to edit a non-
existent record will generate the “I” reply status code, while trying to remove a non-existent
record will return “A” anyway.

Here is the sample session in which we add, edit, and remove a record:

Sample sessions are shown with packet wraps (i.e. you may type commands below right into the

HyperTerminal). They assume that you are working with Terminal #1 (Destination=1)
PC: ll11IA0712:00:00àà1 Add a record (notice that there is no record number)

T: ll11A2 OK, new record number is 2
PC: ll11IE072àà13:00:00àà2 Edit record 2

T: ll11A OK
PC: ll11IR072 Remove record 2

T: ll11A OK
l is STX (02H, <CTRL>- under HyperTerminal), all packets end with <CR>

àà is the TAB character

Section 8. miscellaneous commands

This last group includes commands that are hard to classify:

All commands and replies are shown without packet wrap (STX, destination, source, etc.)
Cmd Usage Reply Comment
E E xx…x A xx…x Echo. Returns whatever data

was sent
P P A yy…y , zz…z | F Poll. Returns Terminal’s

machine number and name
xx…x Alphanumeric data of any kind
yy…y Machine number (numeric)
zz…z Machine name (alphanumeric)

8.1. The Echo command

This command may be used for testing purposes- just to make sure that the Terminal is
there (we have, in fact, started the protocol description from using this command as an
example- see 2.3).

8.2. Polling the Terminal

The Poll command provides you with a convenient method of determining if the
Terminal is there, while at the same time fetching this Terminal’s number and name. Name
and number data comes from MACHNAME and MACHNO Items. You may use this command
to display the list of available Terminals without having to go into lengthy self-learning process
for each Terminal first. The Poll command (and, of course MACHNAME and MACHNO Items)
is guaranteed to be supported by all future versions of the TR4000 series Terminals.

Appendix A. List of supported Items (TimeRecorder V3.10)

Note: this list is only relevant to the TimeRecorder V3.10 firmware. Future firmware
releases may contain additional Items as well as introduce some changes to the existing
ones. We guarantee to keep Item names and IDs intact (that is, for the Items that go into the
next firmware version unchanged). However, Item numbers may change in the future.

#0 MACHNO ID=10000 Type=VAL Size=1 Flags=9 (R, WP)

Machine Number (0-99). Specifies the serial number for this Machine. Serial number is
added to every Time and Attendance record and is useful for distinguishing the data
generated by different Machines.

#1 MACHNAME ID=10010 Type=STR Size=1 Flags=9 (R, WP)

Machine Name (0-16 characters). Specifies Machine name. Names can be used to
conveniently distinguish different Machines from each other. Names do not go into the Time
and Attendance Database.

#2 TIME ID=10020 Type=TIME Size=1 Flags=9 (R, WP)

Time (hh:mm:ss). Sets Machine's time.

#3 DATE ID=10030 Type=DATE Size=1 Flags=9 (R, WP)
Date (DD-MM-YYYY). Set’s Machine’s date.

#4 LOGINPWD ID=10040 Type=STR Size=1 Flags=26 (RP, WP)
Login Password (0-8 characters). Login password is used to restrict online access to

the Machine.

#5 BELLDUR ID=10050 Type=VAL Size=1 Flags=41 (R, WP, U)
Bell duration (0-99 sec., 0-disabled). Sets the amount of time (in seconds) the bell will

be on (once activated).

#6 TABBELL ID=10060 Type=TAB No of fields=1 Flags=41 (R, WP, U)
Bell Table. Defines a daily schedule for the bells. The table consists of a single field-

“Time”. Up to 32 different daily times for the bell can be set.

#7 TABDEFEV ID=10070 Type=TAB No of fields=2 Flags=41 (R, WP, U)
Default Event Table. Defines default event schedule. Within a given timezone, default

event is selected automatically (if enabled) after an ID-card is read or after several seconds of
inactivity. The table consists of two fields: Time field that defines the starting time of a
timezone, and Event field, that defines an event that will be default for this timezone. Possible
event values are: 0- disabled (no automatic default event pre-selection for a given timezone),
1- IN, 2- OUT, 3- BREAK IN, 4-BREAK OUT. Values 1 thru 4 correspond to the functions of
keys F1…F4 on the TR40xx’s keypad.

#8 DEFSHIFT ID=10080 Type=VAL Size=1 Flags=9 (R, WP)

Selects default shift (1-99, 0-disabled). When default shift is set (not 0), the shift will
return to the default value after ID-card is read or after several seconds of inactivity.

#9 LOCKDUR ID=10090 Type=VAL Size=1 Flags=9 (R, WP)

Lock activation duration (0-99 sec., 0-disabled). Defines the amount of time (in
seconds) the door lock relay will be kept activated after every ID-card read.

#10 EXTSCHAR ID=10150 Type=VAL Size=1 Flags=41 (R, WP, U)

External scanner, start character (0-255). ASCII code of the start character of the
external scanner data packet.

 31

#11 EXTECHAR ID=10160 Type=VAL Size=1 Flags=41 (R, WP, U)

External scanner, start character (0-255). ASCII code of the start character of the
external scanner data packet.

#12 EXTBRATE ID=10170 Type=VAL Size=1 Flags=41 (R, WP, U)

External scanner, baudrate . Sets the baudrate of external scanner port: 0-1200bps, 1-
2400bps, 2-4800bps, 3-9600bps, 4-19200bps.

#13 NRTOTAL ID=10100 Type=VAL Size=1 Flags=1 (R)

Total number of records. Displays the total number of records currently found in the
Time and Attendance Database.

#14 NRNEW ID=10110 Type=VAL Size=1 Flags=1 (R)

Number of new records. Displays the number of new Database records (i.e. the
number of records that were added since the Database was last uploaded or saved to disk).

#15 NRFREE ID=10120 Type=VAL Size=1 Flags=1 (R)

Number of free records. Displays the number of free (unused) records in the Time
and Attendance Database.

#16 POWER ID=10130 Type=VAL Size=1 Flags=1 (R)

Power status. Displays current power status: 0-Power OK, 1-Backup (battery) power,
level OK, 2-Backup (battery) power, battery LOW.

#17 VERSION ID=10140 Type=VAL Size=1 Flags=1 (R)

Firmware version. Displays the version of a currently loaded firmware.

Appendix B. Database record structure

Note: the information below is only relevant to the TimeRecorder V3.10 firmware.
Future firmware releases may expand or alter the format of the Time and Attendance
Database (although we will try to keep backward compatibility if possible).

The database record consists of several TAB-delimited fields:

Field Length Comment
Event 1 Event can be 1 (in), 2 (out), 3 (break in), and 4 (break out).

This corresponds to the F1…F4 keys on the TR40xx’s keypad
Date 10 DD-MM-YYYY
Time 8 HH:MM:SS
ID-code Variable,

max. 41
Apostrophe is added in front of the ID-code to make sure that
this field is treated as a string by programs like MS Excel.

Shift 2 Can be in the range from 00 to 99
Machine No 2 Can be in the range from 00 to 99

The TR40xx performs a validity check on every record field prior to sending the record

to the PC (or saving it to disk). Should some field’s data turn out to be invalid, it will be
automatically substituted for a default one. Invalid data may happen due to some internal
database malfunction. Also, the database recovery (using Recover The Database command,
see 6.6) may yield a lot of bad records simply because it covers entire database memory
space (and this includes bad, erased and un-initialized areas).

Here are the substitution rules for invalid fields:

Field Substitution data in case this field’s actual data is invalid
Event “0”
Date “01-01-1999”
Time “00:00:00”
ID-code If ID-code length is out of range (>40 or 0), then “Invalid_ID” will be returned

in this field. If the length is OK but some character codes fall outside of the
20H…7FH range, then these characters will be substituted for “_”

Shift “00”
Machine No “00”

