Tibbo Ethernet-to-Serial Devices: Hardware, Firmware, PC software

Copyright Tibbo Technology 2000-2004

Table of Contents

L

Introduction	9
Hardware Manuals	9
Ethernet-to-serial Modules	
Comparison chart for Ethernet-to-serial Modules	
EM100 Ethernet-to-serial Module	
I/O pin assignment and pin functions	-
Ethernet port lines	
Serial port and general-purpose I/O lines	
LED lines	
Power, reset, and mode selection lines	
Mechanical dimensions	
Specifications and EM100 modifications	
EM120 Ethernet-to-serial Module	
I/O pin assignment and pin functions	
Ethernet port lines	
Serial port and general-purpose I/O lines	
LED lines	
Power, reset, and mode selection lines	
Mechanical dimensions	
Specifications and EM120 modifications	
EM200 Ethernet Module	
I/O pin assignment and pin functions	
Ethernet port lines	
Serial port and general-purpose I/O lines	
LED lines	
Power, reset, and mode selection lines	
Mechanical dimensions	
Specifications and EM200 modifications	
EM202 Ethernet-to-serial Module	
I/O pin assignment and pin functions	
Serial port and general-purpose I/O lines	
LED lines	
Power, reset, and mode selection lines	
Built-in LEDs	
Built-in RJ45 Ethernet connector	
Mechanical dimensions	
Specifications and EM202 modifications	
Ethernet-to-serial Boards	
EM100-EV Evaluation Board	
Power Jack	-
Ethernet port pin assignment	
RS232 port pin assignment	
EM120/EM200-EV Evaluation Board	39
Power Jack	
Ethernet port pin assignment	
RS232 port pin assignment	
Expansion connector pin assignment	
EM202-EV Ethernet-to-serial Board	
Power Jack	
Ethernet port pin assignment	
RS232 port pin assignment	
TTL interface connector pin assignment	

Contents	II
Mechanical dimensions	
Ethernet-to-serial Servers	46
Comparison chart for Ethernet-to-serial Servers	47
DS100 Serial Device Server	
DS100 connectors and controls	
Power Jack	
Ethernet port pin assignment	
Serial port pin assignment and i/f selection	
Status LEDs	51
Setup button	51
Specifications and DS100 modifications	51
DS202 Serial Device Server	52
DS202 connectors and controls	53
Power Jack	53
Ethernet port pin assignment	54
RS232 port pin assignment	54
Status LEDs	55
Setup button	
Specifications and DS202 modifications	56
Kits and Accessories	56
WAS-P0004(B) DS-to-device serial cable	58
WAS-1404 DS-to-device serial cable	58
WAS-P0005(B) DS-to-PC serial cable	59
WAS-1455 DS-to-PC serial cable	59
WAS-1499 "straight" Ethernet cable	59
WAS-1498 "crossover" Ethernet cable	60
TB100 Terminal Block Adaptor	60
12VDC/500mA Power Adaptor	61
DMK100 DIN Rail/ Wall Mounting Kit	61

Firmware Manuals

Monitor (for serial firm	mware upgrades)	65
Status LED signals DS startup procedure		
Serial upgrade mode		67
Device Server Applica	ation Firmware (V3.14/V3.51)	67
Additional features in f	firmware V3.5x	68
Status LED signals		68
Operation		
Ethernet port and network	k communications	71
UDP data "connections'	"	72
Broadcast UDP commun	nications	73
TCP data connections		73
DHCP		74
Serial port and serial com	munications	75
Opened and closed stat	tes of the serial port	
Data routing		
Serial-to-Ethernet data	routing	
Programming		
Serial programming		79
Network programming		80
Out-of-band (UDP) prog	gramming	81
Broadcast out-of-band ((UDP) programming	82
Inband (TCP) programm	ning	82
Command-phase (TCP)	programming	83
Telnet TCP programmin	ng [V3.50 and above]	
Authentication		85

Programming priorities .		. 85
Error mode .		. 87
		. 88
	eplies	
_	ription format	
Login (L) command		. 90
Logout (O) command		-
Reboot (E) command		
Initialize (I) command		
Set Setting (S) command		
Get Setting (G) command		
Parameter (P) command		
Echo (X) command		
Status (U) command		
	ommand	
•	nand	
	N) command	
	ommand	
	mand	
()		
5		
0		
–		
DHCP (DH) setting		
IP-address (IP) setting		
–		
	etting	
	ng	
	tting	
Data Login (DL) setting		
· · ·	setting	
Routing Mode (RM) setting		115
	tting	
•	I) setting	
,	DP) setting	
, , ,	setting	
Netmask (NM) Setting		
	D) setting	
Password (PW) setting		
5	_	
]	
(<i>)</i>		
DTR Mode (DT) setting		
Baudrate (BR) setting		
Parity (PR) setting		
, , , ,		
Soft Entry (SE) setting		
	C) setting	
) setting	
	serung	
	ML) setting	
0 (Delay (MD) setting	
		104

©2000-2004 Tibbo Technology Inc.

	Contents	IV
Start On Any Character (SA) setting		135
Use Start Character (F1) setting		
Start Character Code (S1) setting		
Use Stop Character (U1) setting		
Stop Character Code (E1) setting		
Number Of Post Characters (P1) setting		
Parameters and instructions		
Parameter & instruction description format		
On-the-fly (network-side) parameters & instructions		
Flow Control (FC) parameter		
Baudrate (BR) parameter		
Bits Per Byte (BB) parameter		
Notification Bitmask (NB) parameter		
Get I/O Pin Status (Gx) instruction		
Set I/O Pin Status (GX) Instruction		
Modem (serial-side) parameters & instructions		
Transport Protocol (TP) parameter		
Routing Mode (RM) parameter		
Destination IP-address (DI) parameter		
Destination Port Number (DP) parameter		
Establish Connection (CE) instruction		
Close Connection (CC) instruction		
Abort Connection (CA) instruction		
Firmware revision history		
NetLoader (for network firmware upgrades, V1.10)		
Status LED signals		154
MAC- and IP-address under the NetLoader		155
NetLoader communications		155
How the NetLoader is started		156
Firmware upload procedure		156
Available commands		157
Command description format		158
Echo (X) command		158
Select In Broadcast Mode (W) command		159
Start Over (Q) command		160
Data Block (D) command		160
Verify And Start Firmware (E) command		161
Get Firmware Version (V) command		
Software Manuals		162

Software Manuals

_

Device Server Toolki	(DST) Software for Windows (Release 3.5)	163
DS Manager		
DS status icons		
Access modes		
Auto-discovery access	mode	
Broadcast access		
Troubleshooting (aut	o-discovery mode)	
Address book access	node	
Access parameters f	or the address book mode	
Preparing the DS for	nband access	
Troubleshooting (add	ress book mode)	
COM access mode		
Troubleshooting (COI	/ mode)	
Functions	· · · · · · · · · · · · · · · · · · ·	
Editing DS settings (Se	ttings button)	
Upgrading DS firmware	(Upgrade button)	181

Initializing the DS (Initialize but	ton)	. 182
Monitoring DS Status (Routing	g Status button)	. 183
"Buzzing" the DS (Buzz buttor	n)	. 185
Changing IP-address (Change	IP button)	. 185
Editing the address book (Add	, Remove, Edit buttons)	. 186
Warnings and messages		. 186
DS status messages		. 187
Error mode		. 187
Firmware upgrade mode		. 187
IP-address not obtained		. 188
No response		. 188
No status info available		. 188
Programming in progress		. 189
-		. 190
Unreachable IP-address		. 191
		. 191
	orted	
	(inband access)	
	()	
	ader)	
	der)	
	y	
-	y Jired)	
	ade mode)	
(10		
		-
	n error)	
```		
•		
-	vorted	
	d	
	etwork)	
	erial)	
-	ed	
. ,	equired	
	pressed	
•		
	l	
	otion files	
	۲	
_		
How VSP works		. 208
VSP Manager		. 209
VSP name selection		. 210
Tx error handling		. 212
More info on the Tx buffer o	overflows	. 213

©2000-2004 Tibbo Technology Inc.

	Contents	VI
Transport protocol	L	
Additional info on UDP and TCP connections		
On-the-fly commands		
When the VSP sends on-the-fly commands		
Handling of RTS, CTS, DTR, and DSR signals		
Synchronization inssues for on-the-fly commands		
Disabled (with FF escape) mode of the VSP		
Connection timeout		
Connection mode		
Listening port		
Destination modes		
Single-destination mode		
Multi-destination mode		
Outbound packets tab		
Unsupported features and limitations		
Warnings and messages		
Listening port is in use		
No start characters defines		
Port substitution required		
VSP is in use		
Port Monitor		
Preferences dialog (general tab)		
Preferences dialog (event tab)		
Data dump feature		
Connection Wizard		
Choosing the Wizard job		
VSP-to-DS link		
VSP name selection		
Choosing the VSP name		
Target DS		
Additional info on accessing the DS		
Initiator of the data exchange		
Netmask & gateway for the DS		
How the Wizard decides who opens connections		
Transport protocol & listening ports		
On-the-fly commands		
Parameters for the serial port of the DS		
Programming inaccessible DS		
Application-to-DS link		
Target DS		
Additional info on accessing the DS		
Initiator of the data exchange		
Netmask & gateway for the DS		
How the Wizard decides who opens connections		
Transport protocol & listening ports		
Parameters for the serial port of the DS		
Programming inaccessible DS.		
5 5		
DS-to-DS link		
DS #1 (must be local)		
DS #2 (can be local or remote)		
Additional info on accessing the DS		
Initiator of the data exchange		
Netmask & gateway for the DS #1		
Netmask & gateway for the DS #2		
How the Wizard decides who opens the connection		
Transport protocol & listening ports		
Remote exchange for RTS, CTS, DTR, DSR		

Г

٦

Parameters for the serial port of the DS #2	280
Programming inaccessible DS	280
Finishing remote job	281
Programming method for the DS	282
Configuration script file	
Reviewing setup details	284
Final screen	284
Warnings and messages	285
Inband access for local DS	
MAC>IP mapping advised	
DS #1 must be local	
Non-zero port number required	286
Port is in use	
VSP is opened by another application	287
Different IP-address required	
Unable to find setting description file	
Invalid IP-address	
The DS is not local	
Avoid data characters with ASCII code FF	
Virtual Serial Port Driver for LINUX (VSPDL)	
How VSP works	
VSPDL device files	
	-
Controlling VSPDL operation	
VSPDL configuration file (vspd.conf)	
Sample configuration file	
General VSPDL configuration	
Root directory for the daemon ( <root> section)</root>	
Path and prefix for device files ( <devprefix> section)</devprefix>	
Host to bind by default ( <bind> section)</bind>	
Timeout for basic I/O operations ( <timeout> section)</timeout>	
VSPdaemon event logging configuration ( <log> section)</log>	
VSP configuration ( <vsp> section)</vsp>	
VSP number ( <vsp> section)</vsp>	
Host and port to bind for the VSP ( <bind> section)</bind>	
Bind host ( <host> parameter)</host>	
Bind port ( <port> parameter)</port>	
Connection parameters ( <connection> section)</connection>	
Routing mode ( <connection rmode="">)</connection>	
Transport protocol ( <connection proto="">)</connection>	
Additional info on UDP and TCP connections	
Connection mode ( <connection conmode="">)</connection>	
Connection timeout ( <connection timeout="">)</connection>	
On-the-fly commands ( <connection onthefly="">)</connection>	
Password for on-the-fly commands ( <connection clogin="">)</connection>	
Data login ( <connection dlogin="">)</connection>	
Destination device parameters ( <destination> section)</destination>	
Destination IP-address ( <ip> parameter)</ip>	
Destination MAC-address ( <mac> parameter)</mac>	
Destination data port ( <port> parameter)</port>	
Destination command port ( <cport> parameter)</cport>	
Outbound packet generation options ( <packets> section)</packets>	
Maximum packet length ( <maxlen> parameter)</maxlen>	309
Maximum intercharacter delay ( <maxdelay> parameter)</maxdelay>	
Start on any character ( <starton> parameter)</starton>	
Start character ( <startchar> parameter)</startchar>	
Stop character ( <stopchar> parameter)</stopchar>	310
Event logging configuration for the VSP ( <log> section)</log>	311

Cont	tents VIII
Data dump ( <dump> section)</dump>	
Update history	312

# Introduction

This Document System was last updated on 21 SEP 2004 Update history can be found here

#### WELCOME to Tibbo Document System!

This Document System consists of three parts:

- Hardware Manuals describe the hardware of Tibbo Device Servers.
- **Firmware Manuals** describe internal software (called "firmware") of Tibbo Device Servers. In particular, see the <u>Device Server Application Firmware</u>. This is the firmware that turns Tibbo hardware into a fully-functional Device Servers.
- **<u>Software Manuals</u>** describe available PC software.

# Hardware Manuals

This part of documentation describes all hardware supplied by Tibbo.

#### All hardware manufactured by Tibbo is divided into three categories:

- Ethernet-to-serial Modules for onboard installation
- Ethernet-to-serial Boards
- Ethernet-to-serial Servers for external use

Additionally, Tibbo supplies a number of <u>Accessories and Kits</u>.

## **Ethernet-to-serial Modules**

This part of documentation describes Ethernet-to-serial Modules for onboard installation supplied by Tibbo.

The following Modules are currently manufactured:

- EM100 Ethernet-to-serial Module
- EM120 Ethernet-to-serial Module
- EM200 Ethernet-to-serial Module
- EM202 Ethernet-to-serial Module

To simplify choosing between Ethernet-to-serial Modules we provide the following <u>comparison chart</u>.

# **Comparison chart for Ethernet-to-serial Modules**

The following table compares main characteristics of Tibbo Ethernet-to-serial Modules.

9

Hardware Manuals 10

[					
Item	<u>EM100</u>	<u>EM120</u>	<u>EM200</u>	<u>EM202</u>	
Form factor	"IC Chip"		"IC Chip" RJ45 c		RJ45 conn.
Ethernet port type	10BaseT		100/10BaseT		
Ethernet magnetics	Built-in	External		Built-in	
Ethernet (RJ45) connector	External	1		Built-in	
Serial port type	TTL				
Serial port capabilities	Baudrates: 150-115200bps; parity: none, even, odd, mark, space; 7 or 8 bits/byte				
Serial port lines	RX, TX, RTS, CTS, DTR, DSR				
Number of additional general-purpose I/O lines	2	5 0		0	
Routing buffer size (bytes)	510*2	12KBytes*2			
Average current4050220consumption (mA)5020		220	230		
Average operating temperature (C)	(Room)	om) (Room) 55 40		40	
Mechanical dimensions (mm)	46.2x28x13	35x27.5x9.1 <b>32.1x18.5x7.3</b> 32.5x19x15.5			

# EM100 Ethernet-to-serial Module

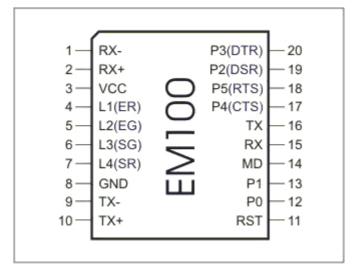


The EM100 is an Ethernet Module for onboard installation. Module hardware includes one 10BaseT Ethernet port (standard Ethernet magnetics are **integrated** into the Module), one serial port (CMOS-level) with a number of additional general-purpose I/O lines, and an internal processor, whose firmware acts as a bridge between the Ethernet and serial ports. Ethernet "side" of the Module connects directly to a standard RJ45 connector. Serial "side" interfaces directly to the serial port pins of most microcontrollers, microprocessors, UARTs, etc.

From the hardware standpoint, the EM100 can be viewed as a universal platform suitable for running a variety of network and serial communications-related applications. It is the application firmware, not hardware that gives the EM100 most of its functionality.

The <u>Application firmware</u> EM100 is supplied with, currently in its 3rd generation ("Release3"), turns the EM100 into a Serial Device Server used to connect serial devices to the Ethernet (TCP/IP) networks.

The application firmware of the EM100 can be upgraded through the module's serial port or Ethernet port*. Serial upgrades are facilitated by a so-called <u>Monitor</u>- a fixed "service" firmware inside the EM100. The Monitor itself cannot be upgraded. Network upgrades rely on the <u>NetLoader</u> firmware component that, like the application firmware itself, can be upgraded through the serial port of the EM100 (using the Monitor). The EM100 is supplied with the application firmware and the NetLoader already pre-loaded into the module.


#### 11 Tibbo Document System

Since most of the EM100's operation is defined by its firmware the major part of the EM100's functional description can be found in the <u>Device Server Application Firmware Manual</u>. This *EM100 Ethernet Module Manual* focuses on the hardware portion of the EM100.

* Network upgrades are only possible on the latest EM100-03 modification of the device (see <u>specifications and EM100 modifications</u> for details)

### I/O pin assignment and pin functions

EM100 pin assignment is shown below.



Click on the pin in the diagram above or one of the links provided below to learn more about EM100's I/O pins:

- Ethernet port lines
- Serial port and general-purpose I/O lines
- LED lines
- Power, reset, and mode selection lines

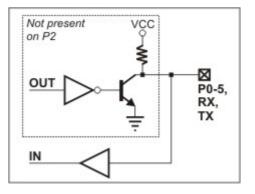
#### Ethernet port lines

#10	TX+	Output	Positive line of the differential output signal pair
#9	TX-	Output	Negative line of the differential output signal pair
#2	RX+	Input	Positive line of the differential input signal pair
#1	RX-	Input	Negative line of the differential input signal pair

Ethernet port of the EM100 is of 10BaseT type. The EM100 is compatible with all 10BaseT Ethernet hubs and also 99% of 100BaseT hubs. This is because most 100BaseT hubs are actually 100/10 machines that auto-detect the type of device connected to each port.

The EM100 is designed to attach directly to the RJ45 Ethernet connector. Standard magnetics circuitry (YCL part 20F001N) has been included onboard to provide a "glueless" interface to the Ethernet network.

It is important to make the PCB wire connections between the Ethernet port pins and the RJ45 as short as possible. Making the wires too long may cause the noise level generated by your PCB surpass the maximum radiated emission limits stipulated by FCC and CE regulations. Additionally, longer Ethernet lines on the PCB will make your board more susceptible to the damage from the ESD (electrostatic discharge).


#16	ТХ	Output	Serial transmit line
#15	RX	Input	Serial receive line
#18	P5 (RTS/DIR)	Input/output (output)	General-purpose input/output line Request to send output (full-duplex mode) Data direction control output (half-duplex mode)
#17	P4 (CTS/SEL)	Input/output (input)	General-purpose input/output line Clear to send input Full-/half-duplex selection input
#20	P3 (DTR)	Input/output (output)	General-purpose input/output line Data terminal ready output
#19	P2 (DSR)	Input (input)	General-purpose input line Data set ready input
#13	P1	Input/output	General-purpose I/O line
#12	P0	Input/output	General-purpose I/O line

### Serial port and general-purpose I/O lines

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM100 features a serial port (RX, TX lines) and several general-purpose I/O lines (P0-P5). All of the above lines are of CMOS type. From the hardware point of view, all general-purpose I/O lines except P2 can serve as inputs or outputs. Line P2 can only work as an input. Maximum load current for all CMOS lines is 10mA.

Simplified structure of EM100's I/O lines is shown on the circuit diagram below. All lines are "quasi-bidirectional" and can be viewed as open collector outputs with weak pull-up resistor. There is no explicit direction control. To "measure" an external signal applied to a pin the OUT line must first be set to HIGH. It is OK to drive the pin LOW externally when the pin outputs HIGH internally.

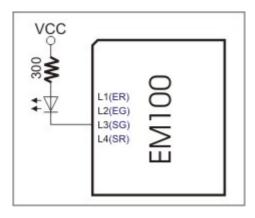


The <u>application firmware</u> of the EM100 maps certain serial port functions onto the general-purpose I/O pins- these functions are shown in blue in the table at the top of this topic. For example, P5 is a universal input/output but the application firmware can be set to turn this line into the RTS output of the serial port. Therefore, depending on your application you can view P5 as a general-purpose I/O line or specific control line of the serial port (RTS).

Being of CMOS type, the serial port and I/O lines of the EM100 can be connected directly to the serial port pins and I/O lines of most microcontrollers, microprocessors, etc. An interface IC* must be added to the EM100 externally if you want to connect the module to a "true" serial port (for example, COM port of the PC).

Logical signals on the serial port lines of the EM100 are active LOW. TX and RX lines are high when idle, start bit is LOW, stop bit is HIGH; LOW on CTS and RTS lines means "transmission allowed" and HIGH means "transmission not allowed". This is standard for CMOS-level serial ports and is exactly opposite to the signalling on the RS232 cables. Logical signals on the EM100 are inverted because standard interface ICs* invert the signals internally too.

As explained earlier, actual functionality of the I/O lines is firmware-dependent. See <u>serial port and serial communications</u> for details.


* Such as MAX232 for RS232, MAX485 for RS485, etc.

### **LED** lines

#4	L1 (ER)	Output	LED output 1, Red Ethernet status LED	
#5	L2 (EG)	Output	LED output 2, Green Ethernet status LED	
#6	L3 (SG)	Output	LED output 3, Green status LED	
#7	L4 (SR)	Output	LED output 4, Red status LED	

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM100 has four LED control lines. All lines have the same internal structure and the LEDs should be connected to these lines as shown on the schematic diagram below. Maximum load for each line is 10mA.



The firmware of the EM100 assigns specific functions to these LED control linesthese functions are shown in blue in the table at the top of this topic.

ER and EG lines reflect the status of the Ethernet port. The EG LED is normally ON, and is temporarily turned off whenever the EM100 receives a network packet. The EG is normally OFF, and is temporarily turned on whenever a data collision is detected on the Ethernet*.

The SR and SG LEDs display various status information depending on what firmware is running at the moment. Follow the links below to learn more about the behaviour of these LEDs under different conditions:

- SR/SG behavior in the monitor firmware.
- SR/SG behavior in the NetLoader.
- <u>SR/SG behavior in the application firmware</u>.

* Strictly speaking, the ER and EG lines are under firmware control. Their behavior is described here because they are always made to work as standard Ethernet status LEDs (like the ones found next to the RJ45 connector on the PC network cards).

#### Power, reset, and mode selection lines

#3	VCC		Positive power input, 5V nominal, +/- 5%, app. 40mA
#8	GND		Ground
#11	RST	Input	Reset, active high
#14	MD (MD)	Input	Mode selection pin

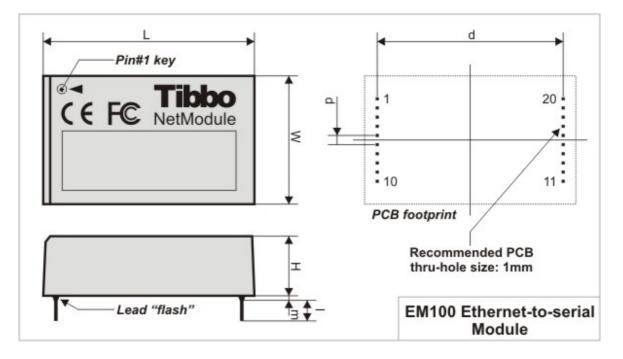
Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM100 should be powered from a stabilized DS power supply with output nominal voltage of 5V (+/- 5% tolerance). Current consumption of the EM100 is approximately 40mA.

Proper external reset is a must! Reset pulse should be an active HIGH. We strongly advise against using low-cost RC-networks and other unreliable methods of generating reset pulse. Reset should be applied for as long as the power supply voltage is below 4.6V. We recommend using a dedicated reset IC with brownout detection, such as MAX810. Reset pulse length should be no less than 50ms, counting from the moment the power supply voltage exceeds 4.6V.

If the EM100 is used to serve as a communications co-processor in a larger system that has its own CPU it is also OK to control the RST line of the EM100 through a general-purpose I/O pin of the "host" microcontroller. I/O pins of many

#### 15 Tibbo Document System


microcontrollers default to HIGH after the powerup and this means that the reset will be applied to the EM100 at the same time when the host microcontroller is reset. All the host microcontroller has to do is release the EM100 from reset at an appropriate time by switching the state of the I/O line to LOW.

The MD line of the EM100 is used to select the operating mode of the EM100 and/or its application firmware. The reason why the pin name is shown as MD(MD) is because the functionality of this pin is in part hardwired and in part depends on the <u>application firmware</u>:

- **Hardwired functionality.** When the EM100 powers up it verifies the state of the MD input. If the MD input is at HIGH the EM100 proceeds to verifying and running the application firmware loaded into its internal FLASH memory. If the MD input is at LOW the EM100 enters the serial upgrade mode. For more information see <u>Monitor</u>.
- **Application firmware-dependent functionality.** When the <u>application firmware</u> is already running the MD line is typically used to make the EM100 enter the serial programming mode. For more information see <u>serial programming</u>.

When the EM100 is used as a co-processor in a host system the MD line can be also controlled by the host microcontroller. Ability to control both the RST and DS lines allows the host microcontroller to switch between the operating modes of the EM100.

### **Mechanical dimensions**



L	Max.	46.2	Module length
W	Max.	28.0	Module width
Н	Max.	13.0	Module height
I	Min.	4.5	Lead length
m	Max.	1.0	Lead "flash"
d	Aver.	40.6	Distance between lead rows
р	Aver.	2.0	Pin pitch

All dimensions are in millimeters

## **Specifications and EM100 modifications**

The EM100 has had three modifications, so there are four different EM100 submodels in circulation: EM100-00, EM100-01, EM100-02, and EM100-03. Currently, only the EM100-03 is being manufactured so the information on EM100-00, EM100-01, and EM100-02 is provided for your reference only.

The EM100-00, EM100-01, and EM100-02 devices were basically the same, with only the minor changes made to the internal hardware (such as bypass capacitors on the internal PCB, etc.). We will refer to all three modifications as EM100-02.

The EM100-03 has extended functionality compared to the EM100-02. There are two notable differences:

- Memory size inside the device has been increased so the <u>routing buffers</u> of the EM100-03 are double the size of the buffers inside the EM100-02 (510 bytes in each direction vs. 255 bytes in each direction).
- Ability to upgrade the <u>application firmware</u> through the network was added (this is facilitated by the <u>NetLoader</u> firmware) to the EM100-03. The EM100-02 cannot run the NetLoader and cannot be upgraded through the network.

Apart from the above differences all EM100 modifications are fully compatible with each other*.

Parameter	EM100-03 (EM100-00/01/02)
Ethernet interface	10BaseT Ethernet, standard magnetics built-in
Serial interface and I/O lines	CMOS-level; TX, RX, and 6 additional I/O lines with RTS, CTS, DTR, DSR implemented in application firmware
Routing buffers size	510 bytes x 2 (255 bytes x 2)
Maximum load current of I/O lines	10mA
Power requirements	DC 5V, +/- 5%, app. 40 mA
Operating temperature	-10 to +70 degrees C
Operating relative humidity	10-90%
Mechanical dimensions (excl. leads)	46.2x28x13mm
Packing	Plastic tray, 30 modules/tray

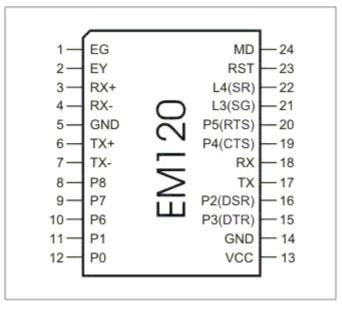
Device specifications are presented in the table below.

* On the functional level, the application firmware files to be loaded into the devices are different!

# EM120 Ethernet-to-serial Module



The EM120 is an Ethernet Module for onboard installation. Module hardware includes one 10BaseT Ethernet port (standard Ethernet magnetics are **NOT integrated** into the Module), one serial port (CMOS-level) with a number of additional general-purpose I/O lines, and an internal processor, whose firmware acts as a bridge between the Ethernet and serial ports. Ethernet "side" of the Module connects directly to a standard Ethernet magnetics circuit (such as YCL-20F001N) or RJ45 connector with integrated magnetics. Serial "side" interfaces directly to the serial port pins of most microcontrollers, microprocessors, UARTs, etc.


From the hardware standpoint, the EM120 can be viewed as a universal platform suitable for running a variety of network and serial communications-related applications. It is the application firmware, not hardware that gives the EM120 most of its functionality.

The <u>Application firmware</u> EM120 is supplied with, currently in its 3rd generation ("Release3"), turns the EM120 into a Serial Device Server used to connect serial devices to the Ethernet (TCP/IP) networks.

The application firmware of the EM120 can be upgraded through the module's serial port or Ethernet port. Serial upgrades are facilitated by a so-called <u>Monitor</u>- a fixed "service" firmware inside the EM120. The Monitor cannot be upgraded. Network upgrades rely on the application firmware itself- there is a self upgrade algorithm that will be detailed later.

Since most of the EM120's operation is defined by its firmware the major part of EM120's functional description can be found in the <u>Device Server Application Firmware Manual</u>. This *EM120 Ethernet Module Manual* focuses on the hardware portion of the EM120.

# I/O pin assignment and pin functions



Click on the pin in the diagram above or one of the links provided below to learn more about EM120's I/O pins:

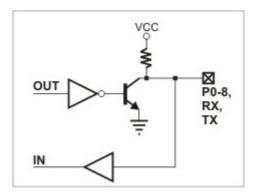
- Ethernet port lines
- Serial port and general-purpose I/O lines
- LED lines
- Power, reset, and mode selection lines

#### **Ethernet port lines**

#6	TX+	Output	Positive line of the differential output signal pair	
#7	TX-	Output	Negative line of the differential output signal pair	
#3	RX+	Input	Positive line of the differential input signal pair	
#4	RX-	Input	Negative line of the differential input signal pair	

Ethernet port of the EM120 is of 10BaseT type. Onboard electronics of the EM120 do not include Ethernet magnetics, so magnetic circuitry must be connected externally. You can use either a standalone magnetics part (such as YCL-20F001N) or RJ45 connector with integrated magnetics.

It is important to make the PCB wire connections between the Ethernet port pins of the EM120 and external magnetics circuitry as short as possible. Making the wires too long may cause the noise level generated by your PCB surpass the maximum radiated emission limits stipulated by FCC and CE regulations. Additionally, longer Ethernet lines on the PCB will make your board more susceptible to the damage from the ESD (electrostatic discharge).


#8	P8	Input/output	General-purpose input/output line
#9	P7	Input/output	General-purpose input/output line
#10	P6	Input/output	General-purpose input/output line
#11	P1	Input/output	General-purpose input/output line
#12	P0	Input/output	General-purpose input/output line
#15	P3 (DTR)	Input/output (output)	General-purpose input/output line Data terminal ready output
#16	P2 (DSR)	Input/output (input)	General-purpose input/output line Data set ready input
#17	TX		Serial transmit line
#18	RX		Serial receive line
#19	P4 (CTS/SEL)	Input/output (input)	General-purpose input/output line Clear to send input Full-/half-duplex selection input
#20	P5 (RTS/DIR)	Input/output (output)	General-purpose input/output line Request to send output (full-duplex mode) Data direction control output (half-duplex mode)

#### Serial port and general-purpose I/O lines

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM120 features a serial port (RX, TX lines) and several general-purpose I/O lines (P0-P8). All of the above lines are of CMOS type. From the hardware point of view, all general-purpose I/O lines can serve as inputs or outputs. Maximum load current for all CMOS lines is 10mA.

Simplified structure of EM120's I/O lines is shown on the circuit diagram below. All lines are "quasi-bidirectional" and can be viewed as open collector outputs with weak pull-up resistor. There is no explicit direction control. To "measure" an external signal applied to a pin the OUT line must first be set to HIGH. It is OK to drive the pin LOW externally when the pin outputs HIGH internally.



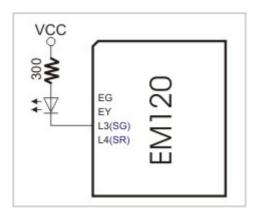
The <u>application firmware</u> of the EM120 maps certain serial port functions onto the general-purpose I/O pins- these functions are shown in blue in the table at the top of this topic. For example, P5 is a universal input/output but the application firmware can be set to turn this line into the RTS output of the serial port. Therefore, depending on your application you can view P5 as a general-purpose I/O line or specific control line of the serial port (RTS).

Being of CMOS type, the serial port and I/O lines of the EM120 can be connected directly to the serial port pins and I/O lines of most microcontrollers, microprocessors, etc. An interface IC* must be added to the EM120 externally if you want to connect the module to a "true" serial port (for example, COM port of the PC).

19

Logical signals on the serial port lines of the EM120 are active LOW. TX and RX lines are high when idle, start bit is LOW, stop bit is HIGH; LOW on CTS and RTS lines means "transmission allowed" and HIGH means "transmission not allowed". This is standard for CMOS-level serial ports and is exactly opposite to the signalling on the RS232 cables. Logical signals on the EM120 are inverted because standard interface ICs* invert the signals internally too.

As explained earlier, actual functionality of the I/O lines is firmware-dependent. See <u>serial port and serial communications</u> for details.


* Such as MAX232 for RS232, MAX485 for RS485, etc.

#### **LED** lines

#1	EG	Output	Green Ethernet status LED	
#2	EY	Output	Yellow Ethernet status LED	
#6	L3 (SG)	Output	LED output 3, Green status LED	
#7	L4 (SR)	Output	LED output 4, Red status LED	

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM120 has four LED control lines. All lines have the same internal structure and the LEDs should be connected to these lines as shown on the schematic diagram below. Maximum load for each line is 10mA.



EG and EY lines reflect the status of the Ethernet port. The EG LED is normally ON, and is temporarily turned off whenever the EM120 receives a network packet. The EY is normally OFF, and is temporarily turned on whenever a data collision is detected on the Ethernet.

SG and SR lines are under firmware control and display various status information depending on what firmware is running at the moment. Follow the links below to learn more about the behaviour of these LEDs under different conditions:

- SR/SG behavior in the monitor firmware.
- SR/SG behavior in the application firmware.

### Power, reset, and mode selection lines

#13	VCC		Positive power input, 5V nominal, +/- 5%, app. 50mA	
#5	GND		Ground	
#14	GND		Ground	
#23	RST	Input	Reset, active high	
#24	MD (MD)	Input	Mode selection pin	

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM120 should be powered from a stabilized DS power supply with output nominal voltage of 5V (+/- 5% tolerance). Current consumption of the EM120 is approximately 50mA.

Proper external reset is a must! Reset pulse should be an active HIGH. We strongly advise against using low-cost RC-networks and other unreliable methods of generating reset pulse. Reset should be applied for as long as the power supply voltage is below 4.6V. We recommend using a dedicated reset IC with brownout detection, such as MAX810. Reset pulse length should be no less than 50ms, counting from the moment the power supply voltage exceeds 4.6V.

If the EM120 is used to serve as a communications co-processor in a larger system that has its own CPU it is also OK to control the RST line of the EM120 through a general-purpose I/O pin of the "host" microcontroller. I/O pins of many microcontrollers default to HIGH after the powerup and this means that the reset will be applied to the EM120 at the same time when the host microcontroller is reset. All the host microcontroller has to do is release the EM120 from reset at an appropriate time by switching the state of the I/O line to LOW.

The MD line of the EM120 is used to select the operating mode of the EM120 and/or its application firmware. The reason why the pin name is shown as MD(MD) is because the functionality of this pin is in part hardwired and in part depends on the <u>application firmware</u>:

- **Hardwired functionality.** When the EM120 powers up it verifies the state of the MD input. If the MD input is at HIGH the EM120 proceeds to verifying and running the application firmware loaded into its internal FLASH memory. If the MD input is at LOW the EM120 enters the serial upgrade mode. For more information see <u>Monitor</u>.
- **Application firmware-dependent functionality.** When the <u>application firmware</u> is already running the MD line is typically used to make the EM120 enter the serial programming mode. For more information see <u>serial programming</u>.

When the EM120 is used as a co-processor in a host system the MD line can be also controlled by the host microcontroller. Ability to control both the RST and DS lines allows the host microcontroller to switch between the operating modes of the EM120.

# **Mechanical dimensions**

Pin#1 key	<b>d</b>	•
CEFC NetModule		24
	12 PCB footprint	13
Ţ	Recommer thru-hole s	
Lead "flash" ↑∃ ‡-		rnet-to-serial dule

L	Max.	35.0	Module length	
W	Max.	27.5	Module width	
Н	Max.	9.1	Module height	
I	Min.	5.0	Lead length	
m	Max.	0.5	Lead "flash"	
d	Aver.	30.0	Distance between lead rows	
р	Aver.	2.0	Pin pitch	

All dimensions are in millimeters

# **Specifications and EM120 modifications**

The EM120 has one submodel in circulation- EM120-00. Device specifications are presented in the table below.

#### 23 Tibbo Document System

Parameter	EM120-00
Ethernet interface	10BaseT Ethernet, magnetics <b>not</b> built-in
Serial interface and I/O lines	CMOS-level; TX, RX, and 9 additional I/O lines with RTS, CTS, DTR, DSR implemented in application firmware
Routing buffers size	12Kbytes x 2*
Maximum load current of I/O lines	10mA
Power requirements	DC 5V, +/- 5%, app. 50mA
Operating temperature	-10 to +70 degrees C
Operating relative humidity	10-90%
Mechanical dimensions (excl. leads)	App. 35x27.5x9.1mm
Packing	Plastic tray, 50 modules/tray

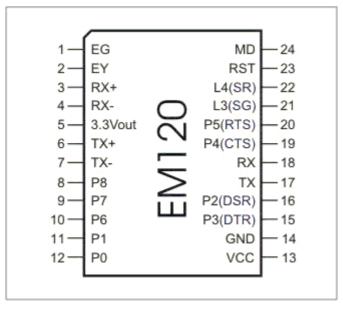
* Maximum possible buffer size. Actual size may be smaller depending on how much RAM is "consumed" by the firmware

## **EM200 Ethernet Module**



The EM200 is an Ethernet Module for onboard installation. Module hardware includes one 100BaseT Ethernet port (standard Ethernet magnetics are **NOT integrated** into the Module), one serial port (CMOS-level) with a number of additional general-purpose I/O lines, and an internal processor, whose firmware acts as a bridge between the Ethernet and serial ports. Ethernet "side" of the Module connects directly to a standard Ethernet magnetics circuit (such as YCL-PH163112) or RJ45 connector with integrated magnetics. Serial "side" interfaces directly to the serial port pins of most microcontrollers, microprocessors, UARTs, etc.

From the hardware standpoint, the EM200 can be viewed as a universal platform suitable for running a variety of network and serial communications-related applications. It is the application firmware, not hardware that gives the EM200 most of its functionality.


The <u>Application firmware</u> EM200 is supplied with, currently in its 3rd generation ("Release3"), turns the EM200 into a Serial Device Server used to connect serial devices to the Ethernet (TCP/IP) networks.

The application firmware of the EM200 can be upgraded through the module's serial port or Ethernet port. Serial upgrades are facilitated by a so-called <u>Monitor</u>- a fixed "service" firmware inside the EM200. The Monitor cannot be upgraded. Network upgrades rely on the application firmware itself- there is a self upgrade algorithm that will be detailed later.

Since most of the EM200's operation is defined by its firmware the major part of the EM200's functional description can be found in the <u>Device Server Application Firmware Manual</u>. This *EM200 Ethernet Module Manual* 

focuses on the hardware portion of the EM200.

### I/O pin assignment and pin functions



Click on the pin in the diagram above or one of the links provided below to learn more about EM200's I/O pins:

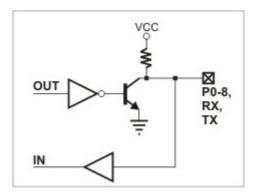
- Ethernet port lines
- Serial port and general-purpose I/O lines
- LED lines
- Power, reset, and mode selection lines

#### **Ethernet port lines**

#6	TX+	Output	Positive line of the differential output signal pair	
#7	TX-	Output	Negative line of the differential output signal pair	
#3	RX+	Input	Positive line of the differential input signal pair	
#4	RX-	Input	Negative line of the differential input signal pair	
#5	3.3V	Output	"Clean" 3.3V power for magnetics circuitry	

Ethernet port of the EM200 is of 100BaseT type. Onboard electronics of the EM200 do not include Ethernet magnetics, so magnetic circuitry must be connected externally. You can use either a standalone magnetics part (such as YCL-PH163112) or RJ45 connector with integrated magnetics.

It is important to make the PCB wire connections between the Ethernet port pins of the EM200 and external magnetics circuitry as short as possible. Making the wires too long may cause the noise level generated by your PCB surpass the maximum radiated emission limits stipulated by FCC and CE regulations. Additionally, longer Ethernet lines on the PCB will make your board more susceptible to the damage from the ESD (electrostatic discharge).


#8	P8	Input/output	General-purpose input/output line
#9	P7	Input/output	General-purpose input/output line
#10	P6	Input/output	General-purpose input/output line
#11	P1	Input/output	General-purpose input/output line
#12	P0	Input/output	General-purpose input/output line
#15	P3 (DTR)	Input/output (output)	General-purpose input/output line Data terminal ready output
#16	P2 (DSR)	Input/output (input)	General-purpose input/output line Data set ready input
#17	ТХ		Serial transmit line
#18	RX		Serial receive line
#19	P4 (CTS/SEL)	Input/output (input)	General-purpose input/output line Clear to send input Full-/half-duplex selection input
#20	P5 (RTS/DIR)	Input/output (output)	General-purpose input/output line Request to send output (full-duplex mode) Data direction control output (half-duplex mode)

#### Serial port and general-purpose I/O lines

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM200 features a serial port (RX, TX lines) and several general-purpose I/O lines (P0-P8). All of the above lines are of CMOS type. From the hardware point of view, all general-purpose I/O lines can serve as inputs or outputs. Maximum load current for all CMOS lines is 10mA.

Simplified structure of EM200's I/O lines is shown on the circuit diagram below. All lines are "quasi-bidirectional" and can be viewed as open collector outputs with weak pull-up resistor. There is no explicit direction control. To "measure" an external signal applied to a pin the OUT line must first be set to HIGH. It is OK to drive the pin LOW externally when the pin outputs HIGH internally.

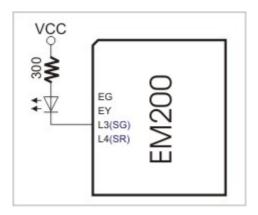


The <u>application firmware</u> of the EM200 maps certain serial port functions onto the general-purpose I/O pins- these functions are shown in blue in the table at the top of this topic. For example, P5 is a universal input/output but the application firmware can be set to turn this line into the RTS output of the serial port. Therefore, depending on your application you can view P5 as a general-purpose I/O line or specific control line of the serial port (RTS).

Being of CMOS type, the serial port and I/O lines of the EM200 can be connected directly to the serial port pins and I/O lines of most microcontrollers, microprocessors, etc. An interface IC* must be added to the EM200 externally if you want to connect the module to a "true" serial port (for example, COM port of the PC).

Logical signals on the serial port lines of the EM200 are active LOW. TX and RX lines are high when idle, start bit is LOW, stop bit is HIGH; LOW on CTS and RTS lines means "transmission allowed" and HIGH means "transmission not allowed". This is standard for CMOS-level serial ports and is exactly opposite to the signalling on the RS232 cables. Logical signals on the EM200 are inverted because standard interface ICs* invert the signals internally too.

As explained earlier, actual functionality of the I/O lines is firmware-dependent. See <u>serial port and serial communications</u> for details.


* Such as MAX232 for RS232, MAX485 for RS485, etc.

#### **LED** lines

#1	EG	Output	Green Ethernet status LED	
#2	EY	Output	ellow Ethernet status LED	
#6	L3 (SG)	Output	LED output 3, Green status LED	
#7	L4 (SR)	Output	LED output 4, Red status LED	

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM200 has four LED control lines. All lines have the same internal structure and the LEDs should be connected to these lines as shown on the schematic diagram below. Maximum load for each line is 10mA.



EG and EY lines reflect the status of the Ethernet port. The EG LED is switched on whenever a live Ethernet connection is detected by the EM200's Ethernet port. The EG LED is momentarily switched off whenever the EM200 receives a network packet. The EY shows whether current Ethernet link is of 10BaseT type (EY off) or 100BaseT (EY on).

SG and SR lines are under firmware control and display various status information depending on what firmware is running at the moment. Follow the links below to learn more about the behaviour of these LEDs under different conditions:

- SR/SG behavior in the monitor firmware.
- SR/SG behavior in the application firmware.

### Power, reset, and mode selection lines

#13	VCC		Positive power input, 5V nominal, +/- 5%, app. 220mA
#14	GND		Ground
#23	RST	Input	Reset, active high
#24	MD (MD)	Input	Mode selection pin

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM200 should be powered from a stabilized DS power supply with output nominal voltage of 5V (+/- 5% tolerance). Current consumption of the EM200 is approximately 220mA (in 100BaseT mode).

Proper external reset is a must! Reset pulse should be an active HIGH. We strongly advise against using low-cost RC-networks and other unreliable methods of generating reset pulse. Reset should be applied for as long as the power supply voltage is below 4.6V. We recommend using a dedicated reset IC with brownout detection, such as MAX810. Reset pulse length should be no less than 50ms, counting from the moment the power supply voltage exceeds 4.6V.

If the EM200 is used to serve as a communications co-processor in a larger system that has its own CPU it is also OK to control the RST line of the EM200 through a general-purpose I/O pin of the "host" microcontroller. I/O pins of many microcontrollers default to HIGH after the powerup and this means that the reset will be applied to the EM200 at the same time when the host microcontroller is reset. All the host microcontroller has to do is release the EM200 from reset at an appropriate time by switching the state of the I/O line to LOW.

The MD line of the EM200 is used to select the operating mode of the EM200 and/or its application firmware. The reason why the pin name is shown as MD(MD) is because the functionality of this pin is in part hardwired and in part depends on the <u>application firmware</u>:

- **Hardwired functionality.** When the EM200 powers up it verifies the state of the MD input. If the MD input is at HIGH the EM200 proceeds to verifying and running the application firmware loaded into its internal FLASH memory. If the MD input is at LOW the EM200 enters the serial upgrade mode. For more information see <u>Monitor</u>.
- **Application firmware-dependent functionality.** When the <u>application firmware</u> is already running the MD line is typically used to make the EM200 enter the serial programming mode. For more information see <u>serial programming</u>.

When the EM200 is used as a co-processor in a host system the MD line can be also controlled by the host microcontroller. Ability to control both the RST and DS lines allows the host microcontroller to switch between the operating modes of the EM200.

# **Mechanical dimensions**

← L /Pin#1 key		<b>-</b>	•
Lead "flash"			24 13 nended PCB size: 0.6mm
	' T–		nernet-to-seria lodule

L	Max.	32.1	Module length	
W	Max.	18.5	Nodule width	
Н	Max.	7.3	Module height	
Ι	Min.	2.2	Lead length	
m	Max.	0.5	_ead "flash"	
d	Aver.	28.0	Distance between lead rows	
р	Aver.	1.27	Pin pitch	

All dimensions are in millimeters

# Specifications and EM200 modifications

The EM200 has one submodel in circulation- EM200-00.

Device specifications are presented in the table below.

Parameter	EM200-00
Ethernet interface	10/100BaseT Ethernet, magnetics <b>not</b> built-in
Serial interface and I/O lines	CMOS-level; TX, RX, and 9 additional I/O lines with RTS, CTS, DTR, DSR implemented in application firmware
Routing buffers size	12Kbytes x 2*
Maximum load current of I/O lines	10mA
Power requirements	DC 5V, +/- 5%, app. 220mA
Device temperature during operation	+55 degrees C** (in 100BaseT mode)
Operating temperature	-10 to +70 degrees C
Operating relative humidity	10-90%
Mechanical dimensions (excl. leads)	App. 32.1x18.5x7.3mm
Packing	Plastic tray, 50 modules/tray

* Maximum possible buffer size. Actual size may be smaller depending on how much RAM is "consumed" by the firmware

** As measured on top of the device

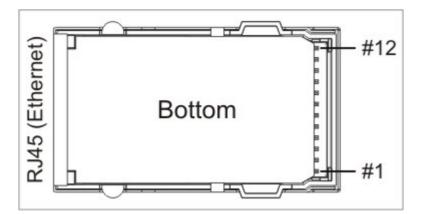
# EM202 Ethernet-to-serial Module



The EM202 is a "RJ45 form factor" Ethernet Module for onboard installation. Module hardware includes one 100BaseT Ethernet port (standard Ethernet magnetics and RJ45 connector are integrated in the EM202*), one serial port (CMOS-level), and an internal processor, whose firmware acts as a bridge between the Ethernet and serial ports. Standard Ethernet cable plugs directly into the RJ45 connector on the network "side" of the Module. Serial "side" interfaces directly to the serial port pins of most microcontrollers, microprocessors, UARTs, etc.

From the hardware standpoint, the EM202 can be viewed as a universal platform suitable for running a variety of network and serial communications-related applications. It is the application firmware, not the hardware that gives the EM202 most of its functionality.

The <u>Application firmware</u> EM202 is supplied with, currently in its 3rd generation ("Release3"), turns the EM202 into a Serial Device Server used to connect serial devices to the Ethernet (TCP/IP) networks.


The application firmware of the EM202 can be upgraded through the module's serial port or Ethernet port. Serial upgrades are facilitated by a so-called <u>Monitor</u>- a fixed "service" firmware inside the EM202. The Monitor itself cannot be upgraded. Network upgrades rely on the application firmware itself- there is a self upgrade algorithm that will be detailed later.

Since most of the EM202's operation is defined by its firmware the major part of the EM202's functional description can be found in the <u>Device Server Application Firmware Manual</u>. This *EM202 Ethernet Module Manual* focuses on the hardware portion of the EM202.

*Or, to put it another way, the electronics of the EM202 are built into RJ45 connector.

# I/O pin assignment and pin functions

EM202 pin assignment is shown below.

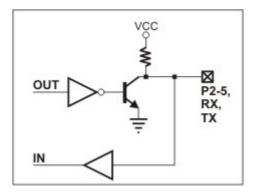


#1	MD (MD)	Input	Mode selection pin
#2	RST	Input	Reset, active high
#3	P3 (DTR)	Input/output (output)	General-purpose input/output line Data terminal ready output
#4	P2 (DSR)	Input/output (input)	General-purpose input/output line Data set ready input
#5	L3 (SG)	Output (output)	LED output 3 (Green status LED)
#6	L4 (SR)	Output (output)	LED output 4 (Red status LED)
#7	VCC		Positive power input, 5V nominal, +/- 5%, app. 220mA
#8	GND		Ground
#9	RX	Input	Serial receive line
#10	ТХ	Output	Serial transmit line
#11	P4 (CTS/SEL)	Input/output (input)	General-purpose input/output line Clear to send input Full-/half-duplex selection input
#12	P5 (RTS/DIR)	Input/output (output)	General-purpose input/output line Request to send output (full-duplex mode) Data direction control output (half-duplex mode)

Line functions defined by the <u>application firmware</u> are shown in **blue** 

Click on one of the links provided below to learn more about EM202's I/O pins:

- Serial port lines
- LED lines
- Power, reset, and mode selection lines


### Serial port and general-purpose I/O lines

#3	P3	Input/output (output)	General-purpose input/output line Data terminal ready output
	(DTR)		
#4	P2	Input/output	General-purpose input/output line
	(DSR)	(input)	Data set ready input
#9	RX		Serial receive line
#10	тх		Serial transmit line
#11	P4	Input/output	General-purpose input/output line
	(CTS/SEL)	(input)	Clear to send input
			Full-/half-duplex selection input
#12	P5	Input/output	General-purpose input/output line
	(RTS/DIR)	(output)	Request to send output (full-duplex mode)
			Data direction control output (half-duplex mode)

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM202 features a serial port (RX, TX lines) and several general-purpose I/O lines (P2*-P5). All of the above lines are of CMOS type. From the hardware point of view, all general-purpose I/O lines can serve as inputs or outputs. Maximum load current for all CMOS lines is 10mA.

Simplified structure of EM202's I/O lines is shown on the circuit diagram below. All lines are "quasi-bidirectional" and can be viewed as open collector outputs with weak pull-up resistor. There is no explicit direction control. To "measure" an external signal applied to a pin the OUT line must first be set to HIGH. It is OK to drive the pin LOW externally when the pin outputs HIGH internally.



The <u>application firmware</u> of the EM202 maps certain serial port functions onto the general-purpose I/O pins- these functions are shown in blue in the table at the top of this topic. For example, P5 is a universal input/output but the application firmware can be set to turn this line into the RTS output of the serial port. Therefore, depending on your application you can view P5 as a general-purpose I/O line or specific control line of the serial port (RTS).

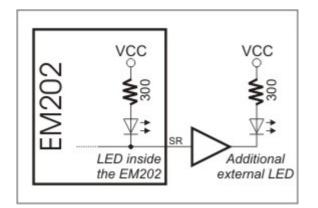
Being of CMOS type, the serial port and I/O lines of the EM202 can be connected directly to the serial port pins and I/O lines of most microcontrollers, microprocessors, etc. An interface IC** must be added to the EM202 externally if you want to connect the module to a "true" serial port (for example, COM port of the PC).

Logical signals on the serial port lines of the EM202 are active LOW. TX and RX lines are high when idle, start bit is LOW, stop bit is HIGH; LOW on CTS and RTS lines means "transmission allowed" and HIGH means "transmission not allowed". This is standard for CMOS-level serial ports and is exactly opposite to the signalling on the RS232 cables. Logical signals on the EM202 are inverted because standard interface

ICs** invert the signals internally too.

As explained earlier, actual functionality of the I/O lines is firmware-dependent. See <u>serial port and serial communications</u> for details.

* There are no lines PO and P1. Line names were selected for naming compatibility with the  $\underline{\rm EM100}$ 


** Such as MAX232 for RS232, MAX485 for RS485, etc.

### **LED** lines

#5	L3* (SG)	Output	LED output 3, Green status LED
#6	L4* <mark>(SR)</mark>	Output	LED output 4, Red status LED

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM202 has two LED control lines. Both lines have the same internal structure. Each line drives one <u>internal LED</u> (see figure below). If you want to connect an external LEDs as well you may do so but we recommend using a TTL buffer element to reduce the load on the I/O line of the EM202's internal microcontroller. Maximum load for each line without the buffer is 2mA.



The firmware of the EM202 uses L3 and L4 as "status LEDs" which display various status information depending on what firmware is running at the moment. Follow the links below to learn more about the behaviour of these LEDs under different conditions:

- SR/SG behavior in the monitor firmware.
- SR/SG behavior in the application firmware.

* There are no lines L1 and L2. Line names were selected for naming compatibility with the  $\underline{\rm EM100}$ 

#7	VCC		Positive power input, 5V nominal, +/- 5%, app. 230mA
#8	GND		Ground
#2	RST	Input	Reset, active high
#1	MD (MD)	Input	Mode selection pin

#### Power, reset, and mode selection lines

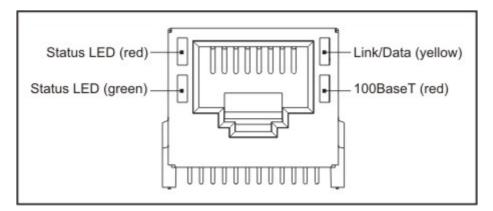
#### 33 Tibbo Document System

Line functions defined by the <u>application firmware</u> are shown in **blue** 

The EM202 should be powered from a stabilized DS power supply with output nominal voltage of 5V (+/- 5% tolerance). Current consumption of the EM202 is approximately 230mA (in 100BaseT mode).

Proper external reset is a must! Reset pulse should be an active HIGH. We strongly advise against using low-cost RC-networks and other unreliable methods of generating reset pulse. Reset should be applied for as long as the power supply voltage is below 4.6V. We recommend using a dedicated reset IC with brownout detection, such as MAX810. Reset pulse length should be no less than 50ms, counting from the moment the power supply voltage exceeds 4.6V.

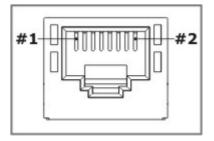
If the EM202 is used to serve as a communications co-processor in a larger system that has its own CPU it is also OK to control the RST line of the EM202 through a general-purpose I/O pin of the "host" microcontroller. I/O pins of many microcontrollers default to HIGH after the powerup and this means that the reset will be applied to the EM202 at the same time when the host microcontroller is reset. All the host microcontroller has to do is release the EM202 from reset at an appropriate time by switching the state of the I/O line to LOW.


The MD line of the EM202 is used to select the operating mode of the EM202 and/or its application firmware. The reason why the pin name is shown as MD(MD) is because the functionality of this pin is in part hardwired and in part depends on the application firmware:

- **Hardwired functionality.** When the EM202 powers up it verifies the state of the MD input. If the MD input is at HIGH the EM202 proceeds to verifying and running the application firmware loaded into its internal FLASH memory. If the MD input is at LOW the EM202 enters the serial upgrade mode. For more information see <u>Monitor</u>.
- **Application firmware-dependent functionality.** When the <u>application firmware</u> is already running the MD line is typically used to make the EM202 enter the serial programming mode. For more information see <u>serial programming</u>.

When the EM202 is used as a co-processor in a host system the MD line can be also controlled by the host microcontroller. Ability to control both the RST and DS lines allows the host microcontroller to switch between the operating modes of the EM202.

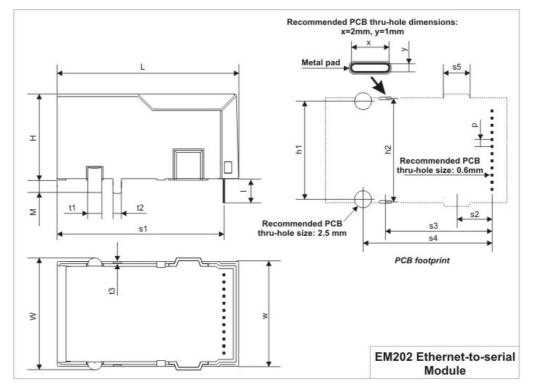
### Built-in LEDs2


The EM202 features four built-in LEDs (shown on figure below) that are placed on the front of the device, next to the RJ45 connector.



#### LEDs have the following function:

- Status LED (red) is internally connected to the <u>L4(SR) LED control line</u>.
- Status LED (green) is internally connected to the <u>L3(SG) LED control line</u>.
- Link/Data LED (green) is turned on when "live" Ethernet cable is plugged into the Module. The LED is temporarily switched off whenever an Ethernet packet is received.
- **100BaseT LED** (yellow) is turned on when the EM202 links with the hub at 100Mb. The LED is off when the link is established at 10Mb.


### **Built-in RJ45 Ethernet connector**



Ethernet port of the EM202 is of 10/100BaseT type (auto-switching). Connector is of RJ45 type, pin assignment is as follows:

#1	TX+
#2	TX-
#3	RX+
#4	<no connection=""></no>
#5	<no connection=""></no>
#6	RX-
#7	<no connection=""></no>
#8	<no connection=""></no>

# Mechanical dimensions



L	Max.	32.3	Module length
W	Max.	20.0	Module width including mounting holders
w	Max.	19.0	Module width excluding mounting holders
Н	Max.	16.0	Module height
Ι	Min.	4.5	Lead length
М	Min.	1.9	Height of mounting holders and solder pins
t1	Aver.	2.45	Mounting holder diameter
t2	Aver.	1.5	Solder pin width
t3	Aver.	0.25	Solder pin thickness
р	Aver.	1.27	Pin pitch
s1	Aver.	29.7	Distance from device "face" to the leads
s2	Aver.	6.3	Distance from leads to the center of "pockets"
s3	Aver.	19.0	Distance from leads to the mounting solder pins
s4	Aver.	23.0	Distance from leads to the mounting holders
s5	Max.	5.0	"Pocket" length
h1	Aver.	17.5	Distance between center lines of mounting holders
h2	Aver.	18.5	Distance between center lines of mounting solder pins

All dimensions are in millimeters

## Specifications and EM202 modifications

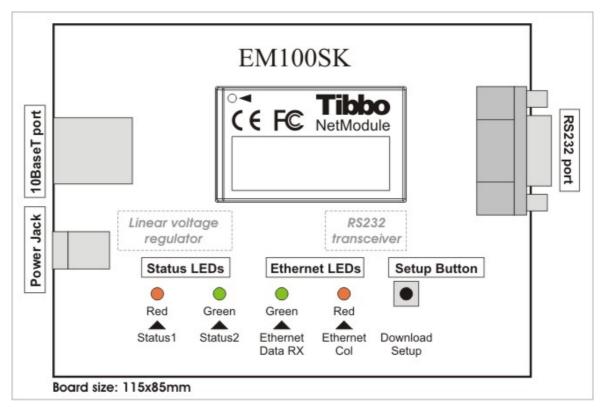
The EM202 has one submodel in circulation- EM202-00.

Device specifications are presented in the table below.

Parameter	EM202-00
Ethernet interface	10/100BaseT Ethernet, standard magnetics and RJ45 connector built-in
Serial interface and I/O lines	CMOS-level; TX, RX, and 4 additional I/O lines with RTS, CTS, DTR, DSR implemented in application firmware
Routing buffers size	12Kbytes x 2*
Maximum load current of I/O lines	10mA
Power requirements	DC 5V, +/- 5%, app. 230 mA (in 100BaseT mode)
Device temperature during operation	+40 degrees C** (in 100BaseT mode)
Operating temperature	-10 to +70 degrees C
Operating relative humidity	10-90%
Mechanical dimensions (excl. leads)	App. 32.5x19x15.5mm
Packing	Plastic tray, 30 modules/tray

* Maximum possible buffer size. Actual size may be smaller depending on how much RAM is "consumed" by the firmware

** As measured on top of the device

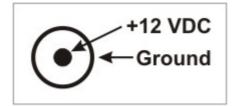

# **Ethernet-to-serial Boards**

This part of documentation describes Ethernet-to-serial Boards supplied by Tibbo. These boards can be used for convenient evaluation and testing of Tibbo <u>Ethernet-to-serial Modules</u>. At the same time, some boards are also suitable for use in production devices as "faster implementation" alternatives to Modules.

The following Boards are currently manufactured:

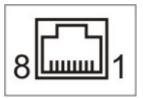
- EM100-EV Evaluation Board
- EM120/EM200-EV Evaluation Board
- EM202-EV Ethernet-to-RS232 Board

# **EM100-EV Evaluation Board**




The EM100-EV Evaluation Board offers a convenient way of testing <u>EM100 Ethernet Module</u>. The board features the following components:

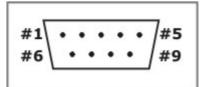
- A socket for EM100 Module installation
- <u>Power jack</u> and a linear voltage regulator circuitry (12VDC-->5VDC, adaptor current rating must be no less than 500mA)
- RJ45 connector
- <u>DB9M RS232 connector</u> and RS232 transceiver (supported signals are RX, TX, RTS, CTS)
- Setup button (connected to the MD line of the EM100)
- Ethernet LEDs and Status LEDs (connected to LED lines of the EM100)


### Power Jack 1

Power Jack of the EM100-EV accepts "large" power connectors with 5.5mm diameter. Use <u>ARP-1014</u>, <u>ARP-1015A</u>, or <u>ARP-1018A</u> power adaptor supplied by Tibbo or similar adaptor. Nominal voltage is 12VDC and adaptor current rating should be at least 500mA. On the power jack, the ground is "on the outside", as shown on the figure below.

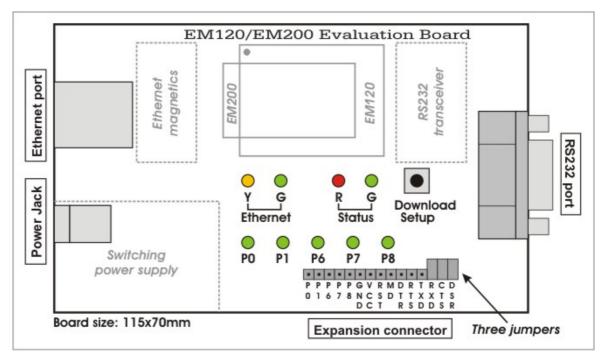


# Ethernet port pin assignment


RJ45 Ethernet connector has the following pin assignment:



#1	TX+
#2	TX-
#3	RX+
#4	<no connection=""></no>
#5	<no connection=""></no>
#6	RX-
#7	<no connection=""></no>
#8	<no connection=""></no>


# RS232 port pin assignment

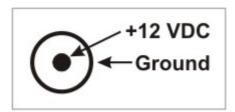
DB9M RS232 connector has the following pin assignment:



#1	<no connection=""></no>
#2	RX (input)
#3	<b>TX</b> (output)
#4	<no connection=""></no>
#5	Ground
#6	<no connection=""></no>
#7	RTS (output)
#8	CTS (input)
#9	<no connection=""></no>

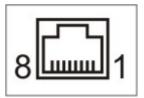
# EM120/EM200-EV Evaluation Board




The EM120/200-EV Evaluation Board offers a convenient way of testing  $\underline{\text{EM120}}$  and  $\underline{\text{EM200}}$  Ethernet Modules. The board features the following components:

- A socket for EM120 or EM200 installation
- <u>Power jack</u> and a switching power regulator (12VDC-->5VDC, adaptor current rating must be no less than 500mA)
- <u>RJ45 connector</u> and 10/100BaseT Ethernet Magnetics (EM120 and EM200 do not have built-in magnetics)
- <u>DB9M RS232 connector</u> and RS232 transceiver (supported signals are RX, TX, RTS, CTS, DTR, DSR)
- Setup button (connected to the MD line of EM120/EM200)
- Two Ethernet LEDs and two status LEDs (connected to LED lines of EM120/200)
- Five additional LEDs connected to lines P0, P1, P6-8 of the EM120/EM200
- <u>15-pin expansion connector</u> provides access to EM120/EM200's serial and generalpurpose I/O pins (therefore, all I/O lines on this connector are of TTL type)

### Power Jack 1


Power Jack of the EM120/EM200-EV accepts "large" power connectors with 5.5mm diameter. Use <u>ARP-1014</u>, <u>ARP-1015A</u>, or <u>ARP-1018A</u> power adaptor supplied by Tibbo or similar adaptor. Nominal voltage is 12VDC and adaptor current rating should be at least 500mA. On the power jack, the ground is "on the outside", as shown on the figure below.

39



# Ethernet port pin assignment

RJ45 Ethernet connector has the following pin assignment:



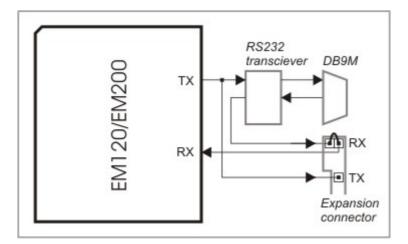
#1	TX+
#2	TX-
#3	RX+
#4	<no connection=""></no>
#5	<no connection=""></no>
#6	RX-
#7	<no connection=""></no>
#8	<no connection=""></no>

# RS232 port pin assignment

DB9M RS232 connector has the following pin assignment:

<b>#1</b>		7#5
#6	••••	#9

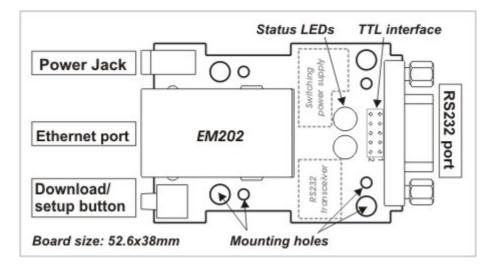
#1	<no connection=""></no>
#2	RX (input)
#3	<b>TX</b> (output)
#4	DTR (output)
#5	Ground
#6	DSR (input)
#7	RTS (output)
#8	CTS (input)
#9	<no connection=""></no>


## Expansion connector pin assignment

15-pin expansion connector has the following pin assignment:

P0	Connected to pin P0 of EM120/EM200
P1	Connected to pin P1 of EM120/EM200
P6	Connected to pin P6 of EM120/EM200
P7	Connected to pin P7 of EM120/EM200
P8	Connected to pin P8 of EM120/EM200
GND	Ground
VCC	+5V from the EM120/EM200-EV board. Available "spare" current about 50mA
RST	Reset (active high) from the EM120/EM200-EV board. The signal is generated by an onboard reset IC. The same signal is applied to pin RST of EM120/EM200
MD	Connected to the download/setup button on the EM120/EM200-EV board. The signal is connected to pin MD of EM120/EM200
DTR	Connected to pin P3(DTR) of EM120/EM200
RTS	Connected to pin P5(RTS) of EM120/EM200
ТХ	Connected to pin TX of EM120/EM200
RX	Connected to pin RX of EM120/EM200
CTS	Connected to pin P4(CTS) of EM120/EM200
DSR	Connected to pin P2(DSR) of EM120/EM200

Output signals that are present both on the DB9M and expansion connectors (DTR, RTS, TX) need not be switched. So, for example, the TX (output) line from the EM120/EM200 is connected to the RS232 transceiver IC and to the expansion connector. For input signals (RX, CTS, DSR) there must be a way to disconnect the RS232 transceiver IC from the EM120/EM200. Three jumpers (combined with pins RX, CTS, DSR of the expansion connector) serve this purpose.


For example, when the RX jumper is closed the RX pin of the EM120/EM200 receives a signal from the RS232 transceiver. When the jumper is opened you can use the RX pin on the expansion connector to supply a TTL RX signal from your own external board. Figure below illustrates this.



Maximum load for all CMOS-type lines (P0, P1, ... RX, TX...) is 10mA.

41

# EM202-EV Ethernet-to-serial Board



EM202-EV Evaluation Boards offer a convenient way of testing

<u>EM202 Ethernet Module</u>. The boards are small enough to also be used in production devices- instead of making your own PCB to accommodate the EM202 you can piggyback the whole EM202-EV board onto your device's main PCB. Power Jack, RJ45 "face" of the EM202 (also featuring four status LEDs), and the download/setup button are conveniently placed on the same side of the EM202-EV and aligned- this way you can, for example, make necessary opening on the back cover of your Product and mount the EM202-EV behind this cover. Two sets of mounting holes with smaller and larger diameters are provided for board mounting.

	EM202-EV-RS (RS232)	EM202-EV-TM (TTL master)	EM202-EV-TS (TTL slave)	
EM202 Module with <u>RJ45</u>	YES			
Download/setup button	YES			
RS232 transceiver	YES	NO		
DB9M connector	YES	NO		
Status LEDs on top	YES	NO		
TTL interface connector	NO	YES*		
Power Jack	YES NO		NO	
Switching power supply	YES NO		NO	
Reset IC	YES NO			

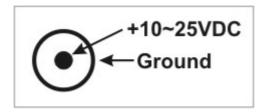
The EM202-EV is supplied	d in three modifications:
--------------------------	---------------------------

* Meaning that this connector can be used

The EM202-EV-RS is the most "complete" of three boards as it contains all necessary parts for standalone operation. This board can be used to build an external Serial Device Server similar in function to the <u>DS100</u>.

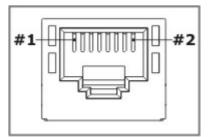
The EM202-EV-TM and EM202-EV-TS do not have RS232 transceiver and DB9M connector. Instead, you have access to an <u>8-pin TTL interface connector</u> (only through-hole pads on the PCB are provided). This TTL interface is convenient when you want to interface the board to some other IC (microcontroller, UART, etc.).

The difference between the EM202-EV-TM and EM202-EV-TS is that -TM modification (stands for "TTL master") has reset IC, switching power supply, and <u>power jack</u> onboard, while -TS requires *your* board to supply regulated 5VDC power


#### 43 Tibbo Document System

and reset signal.

Onboard power supply of the EM202-EV-TM has a "spare" power capacity of about 100mA, which can probably used to power your device's main board as well.


## Power Jack 1

Power Jack of the EM202-EV accepts "small" power connectors with 3.5mm diameter. Use <u>ARP-P0006</u>, <u>ARP-P0007</u>, or <u>ARP-P0008</u> power adaptor supplied by Tibbo or similar adaptor. Acceptable supply power range is 10-25VDC. Adaptor current rating should be at least 500mA. On the power jack, the ground is "on the outside", as shown on the figure below.



# Ethernet port pin assignment

RJ45 Ethernet connector has the following pin assignment:



#1	TX+
#2	TX-
#3	RX+
#4	<no connection=""></no>
#5	<no connection=""></no>
#6	RX-
#7	<no connection=""></no>
#8	<no connection=""></no>

# RS232 port pin assignment

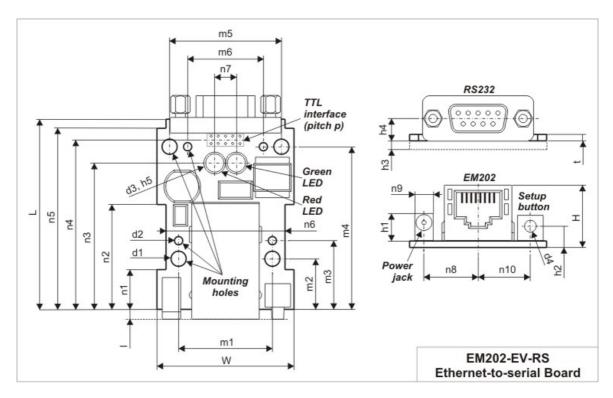
DB9M RS232 connector (only available on EM202-EV-RS) has the following pin assignment:

#1 #6	•	• •	• •	•	#5
#6\	•	٠	•	• /	#9

#1	<no connection=""></no>
#2	RX (input)
#3	<b>TX</b> (output)
#4	DTR (output)
#5	Ground
#6	DSR (input)
#7	RTS (output)
#8	CTS (input)
#9	<no connection=""></no>

## TTL interface connector pin assignment

10-pin TTL interface connector (available on EM202-EV-TM and EM202-EV-TS) has the following pin assignment:


	EM202-EV-TM	EM202-EV-TS	
#1	P5(RTS/DIR	) of EM202	
#2	P4(CTS/DIR)	) of EM202	
#3	TX of E	M202	
#4	RX of E	<b>RX</b> of EM202	
#5	P2(DSR) of EM202		
#6	P3(DTR) of EM202		
#7	MD (wire AND)		
#8	RST (output) RST (input)		
#9	Ground		
#10	+5V VCC (output)	+5V VCC (input)	

Notice, that MD is a "wire AND" line and is pulled low internally when the download/setup button is pressed on the board. Therefore, if your circuit needs to control this line it needs to do so through an open collector output.

Another point where care should be exercised is related to RST and VCC pins. On the EM202-EV-TM these are **outputs**, while on the EM202-EV-TS these pins are **inputs**.

Maximum load for all CMOS-type lines (TX, RX, P2,...) is 10mA.

# **Mechanical dimensions**



L	Aver.	52.6	Board length	
I	Aver.	2.7	Distance from the PCB edge to the front face of EM202, power jack, and setup button	
W	Aver.	38.0	Board width	
Н	Max.	17.5	Board height excluding the heing of the tallest component on the bottom side of the PCB	
t	Aver.	1.6	PCB thickness	
m1	Aver.	26.0	Distance between mounting holes	
m2	Aver.	14.0	Distance to the mounting holes	
m3	Aver.	19.0	Distance to the mounting holes	
m4	Aver.	45.0	Distance to the mounting holes	
m5	Aver.	31.0	Distance between mounting holes	
m6	Aver.	21.0	Distance between mounting holes	
d1	Aver.	4.2	Mounting hole diameter	
d2	Aver.	2.3	Mounting hole diameter	
d3	Aver.	5.0	LED diameter	
d4	Aver.	3.3	Setup button diameter	
n1	Aver.	11.0	PCB outline dimension	
n2	Aver.	XXX	PCB outline dimension	
n3	Aver.	40.5	Distance to the LEDs	
n4	Aver.	46.9	Distance to the TTL interface connector	
n5	Aver.	50.1	PCB outline dimension	
n6	Aver.	33.0	PCB outline dimension	
n7	Aver.	6.0	Distance between LEDs	
n8	Aver.	15.0	Distance to the power jack	
n9	Aver.	5.1	Power jack width	
n10	Aver.	14.5	Distance to the setup button	
h1	Aver.	7.5	Power jack height	
h2	Aver.	5.9	Distance to the center of setup button	
h3	Max.	2.5	Height of the tallest component on the bottom side of the PCB	
h4	Aver.	6.2	Distance to the RS232 (DB9) connector	
h5	Max.	9.0	LED height	
р	Aver.	2.0	TTL interface connector pitch	

All dimensions are in millimiters

# **Ethernet-to-serial Servers**

This part of documentation describes Ethernet-to-serial Servers (for external use) supplied by Tibbo.

#### The following devices are currently manufactured:

- DS100 Serial Device Server
- DS202 Serial Device Server

To simplify choosing between Ethernet-to-serial Devices we provide the following

comparison chart.

## **Comparison chart for Ethernet-to-serial Servers**

The following table compares main characteristics of Tibbo Ethernet-to-serial Devices.

Item	<u>DS100R</u>	<u>DS100B</u>	<u>DS202R</u>
Ethernet port type	10BaseT		100/10BaseT
Serial interface	RS232	RS232/422/485	RS232
Serial port capabilities		50-115200bps; parit pace; 7 or 8 bits/byt	
Serial port lines	RX, TX, RTS, CTS	RX, TX, RTS, CTS,	DTR, DSR*
Routing buffer size (bytes)	510bytes*2		12KB*2
Power supply voltage	12VDC		10~25VDC
Mechanical dimensions	95x57x30mm		60x47x30mm
Firmware**	Below V3.5x		V3.5x or above

* For DS100B this refers to the RS232 mode of the serial port.

** V3.5 has introduced new features that are not supported by earlier firmware released.

# **DS100 Serial Device Server**



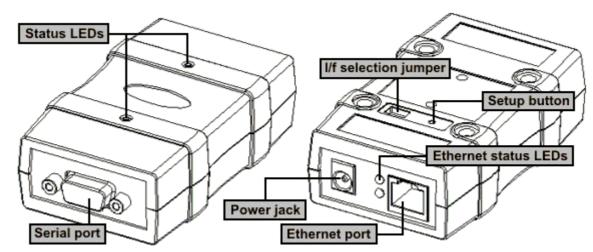
The DS100 is a Serial Device Server for external use. Device hardware includes one 10BaseT Ethernet port, one serial port and an internal processor that "glues" network and serial sides together. Internally, the DS100 is based on the <u>EM100 Ethernet Module</u>.

#### The DS100 is supplied in two modifications:

- DS100R with RS232 serial port.
- **DS100B** with universal RS232/422/485 serial port.

From the hardware standpoint, the DS100 can be viewed as a universal platform suitable for running a variety of network and serial communications-related applications. It is the <u>application firmware</u>, not the hardware that gives the DS100 most of its functionality. The firmware is currently in its 3rd generation ("Release3").

The application firmware of the DS100 can be upgraded through the device's serial port or Ethernet port. Serial upgrades are facilitated by a so-called <u>Monitor</u>- a fixed


47

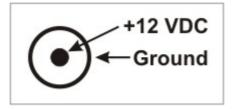
"service" firmware inside the DS100. The Monitor itself cannot be upgraded. Network upgrades rely on the <u>NetLoader</u> firmware component that, like the application firmware itself, can be upgraded through the serial port of the DS100 (using the Monitor). The DS100 is supplied with the application firmware and the NetLoader already pre-loaded.

Since most of the DS100's operation is defined by its firmware the major part of the functional description can be found in the

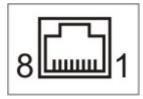
<u>Device Server Application Firmware Manual</u>. This *DS100 Serial Device Server Manual* focuses on the hardware portion of the DS100.

* Network upgrades are only possible on the latest DS100-03 modification of the device (see <u>specifications and EM100 modifications</u> for details)




# **DS100** connectors and controls

Click on the area on the picture above or one of the links provided below to learn more about the DS100:

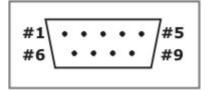

- <u>Power Jack</u> (input power is 12VDC, adaptor current rating must be no less than 500mA)
- Ethernet port pin assignment.
- Serial port pin assignment and interface selection.
- Status LEDs.
- Setup button.

#### **Power Jack**

Power Jack of the DS100 accepts "large" power connectors with 5.5mm diameter. Use <u>ARP-1014</u>, <u>ARP-1015A</u>, or <u>ARP-1018A</u> power adaptor supplied by Tibbo or similar adaptor. Nominal voltage is 12VDC and adaptor current rating should be at least 500mA. On the power jack, the ground is "on the outside", as shown on the figure below.



#### Ethernet port pin assignment




Ethernet port of the DS100 is of 10BaseT type. The DS100 is compatible with all 10BaseT Ethernet hubs and also 99% of 100BaseT hubs. This is because most 100BaseT hubs are actually 100/10 devices that auto-detect the type of device connected to each port.

Connector is of RJ45 type, pin assignment is as follows:

#1	TX+
#2	TX-
#3	RX+
#4	<no connection=""></no>
#5	<no connection=""></no>
#6	RX-
#7	<no connection=""></no>
#8	<no connection=""></no>

#### Serial port pin assignment and i/f selection



The serial port connector of the DS100 is of DB9M type. The DS100 is supplied in two models: the DS100R with RS232 port and DS100B with universal RS232/RS422/RS485 serial port. Notice, that there are no terminators (usually required at the ends of RS422 and RS485 buses) inside the DS100B. Termination circuits are present on the <u>TB100 Terminal Block Adaptor</u> that can be optionally supplied with the DS100B.

Hardware Manuals 50

	DS100R		DS100B	
	RS232 (full-duplex op.)	RS232 (full-duplex op.)	RS422 (full-duplex op.)	RS485 (half-duplex op.)
#1	<no connection=""></no>	<no connection=""></no>	RTS- (output)	<no connection=""></no>
#2	RX (input)	<b>RX</b> (input)	<b>RX-</b> (input)	RX- (input)
#3	TX (output)	<b>TX</b> (output)	TX+ (output)	TX+ (output)
#4	<no connection=""></no>	<b>DTR</b> (output)	<b>TX-</b> (output)	TX- (output)
#5	Ground	Ground	Ground	Ground
#6	<no connection=""></no>	DSR (input)	<b>RX+</b> (input)	RX+ (input)
#7	RTS (output)	RTS (output)	RTS+ (output)	<no connection=""></no>
#8	CTS (input)	CTS (input)	CTS+ (input)	<no connection=""></no>
#9	<no connection=""></no>	<no connection=""></no>	CTS- (input)	<no connection=""></no>

The difference between the RS422 and RS485 modes of the DS100B is not just in that there are no RTS+ and RTS- signals in the RS485 mode. Notice that the table above also details whether the serial port is running in the full-duplex or half-duplex mode when a particular interface is selected. When RS422 is selected the serial port is in the full-duplex mode and the TX+/TX- and RTS+/RTS- signal pairs are active at all times (i.e. output the data). When RS485 is selected the TX+/RX+ signal pair outputs the data only when the DS100 needs to send the data out through the serial port. The incoming data is ignored at this time. When the DS100 is not outputting the data the TX+/TX- signal pair is tri-stated and the DS100 is "listening" to the incoming data on the RX+/RX- signal pair. This allows you to arrange a 2-wire RS485 bus by externally connecting TX+ to the RX+ and TX- to the RX- (this can be conveniently done by using TB100 Terminal Block Adaptor).

Interface selection for the DS100B is done through the DIP switches located on the bottom of the device, next to the setup button (DS100B only). Only switches 1 and 2 are used at the moment, switch 3 is reserved.



Interface	Switch 1	Switch 2
RS232	OFF	OFF
RS422	OFF	ON
RS485	ON	ON

If you change interface selection you need to power the DS100B off and back on again for the new selection to be recognized by the device. Also, for the interface selection to work you need to make sure that the **Serial Interface (SI) setting** of the <u>application firmware</u> is programmed to 2 (auto).

### **Status LEDs**

The Green and Red status LEDs are located on the top of the DS100. The LEDs display various status information depending on what firmware is running at the moment. Follow the links below to learn more about the behaviour of these LEDs under different conditions:

- <u>Status LED behavior in the monitor firmware</u>
- Status LED behavior in the NetLoader
- <u>Status LED behavior in the application firmware</u>

There are also two Ethernet Status LEDs- Green and Red- located next to the RJ45 Ethernet connector. The Green LED is normally ON, and is temporarily turned off whenever the EM100 receives a network packet. The Red LED is normally OFF, and is turned on momentarily whenever a data collision is detected on the Ethernet.

### Setup button

The setup button is located on the bottom side of the DS100. The button can be pushed by a sharp tip of a pencil, pen, etc.

The Button is used to select an operating mode of the DS100:

- When the DS100 is powered up with the button pressed it enters a serial upgrade mode in which new <u>application firmware</u> file can be uploaded into the DS100 through its serial port. If the DS100 is powered up with the setup button not pressed the Device proceeds to running its current application firmware. This functionality is delivered by the <u>Monitor firmware</u> component of the DS100.
- When the <u>application firmware</u> is already running the setup button is used to make the DS100 enter the <u>serial programming mode</u> (hence, the name of a button)*.

* Strictly speaking, this is a functionality that is defined by the application firmware, not the DS100 hardware.

### **Specifications and DS100 modifications**

There are two models of the DS100: the DS100R with RS232 serial interface and the DS100B with RS232/RS422/RS485 serial interface.

The DS100R has had three modifications, so there are four different DS100R submodels in circulation: DS100R-00, DS100R-01, DS100R-02, and DS100R-03. Currently, only the DS100R-03 is being manufactured so the information on DS100R-00, DS100R-01, and DS100R-02 is provided for your reference only.

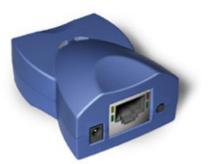
The DS100B has only be supplied in a single modification- DS100B-00.

The DS100R-00, DS100R-01, and DS100R-02 devices were basically the same, with only the minor changes made to the internal hardware (such as bypass capacitors on the internal PCB, etc.). We will refer to all three modifications as DS100R-02.

The DS100R-03 and DS100B-00 have extended functionality compared to the DS100R-02. There are two notable differences:

- Memory size inside the devices has been increased so the <u>routing buffers</u> of the DS100R-03 and DS100B-00 are double the size of the buffers inside the DS100R-02 (510 bytes in each direction vs. 255 bytes in each direction).
- Ability to upgrade the <u>application firmware</u> through the network was added (this is facilitated by the <u>NetLoader</u> firmware) to the DS100R-03 and DS100B-00. The

DS100R-02 cannot run the NetLoader and cannot be upgraded through the network.


Apart from the above differences all DS100 models and modifications are fully compatible with each other*.

Parameter	DS100R-03 (DS100R-00/01/02)	DS100B-00
Ethernet interface	10BaseT Ethernet	
Serial interface and I/O lines	RS232 (TX,RX,RTS,CTS)	RS232 (TX,RX,RTS,CTS,DTR ,DSR) RS422 (TX+/-,RX+/- ,RTS+/-,CTS+/-) RS485 (half-duplex, TX+/-,RX+/-)
Routing buffers size	510 bytes x 2 (255 bytes	5 x 2)
Power requirements	DC 12V, app. 100mA	
Operating temperature	-5 to +70 degrees C	
Operating relative humidity	10-90%	
Mechanical dimensions	95x57x30mm	
Carton dimensions ("bare" DS100)	130x100x65mm	
Gross weight ("bare" DS100)	170g.	
Carton dimensions (DS100-KIT)	325x45x90mm	
Gross weight ( <u>DS100-KIT</u> )	950g.	

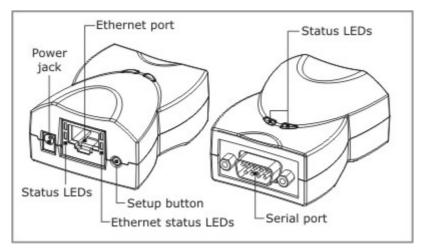
Device specifications are presented in the table below.

* On the functional level, the application firmware files to be loaded into the devices are different!

## **DS202 Serial Device Server**



The DS202 is a Serial Device Server for external use. Device hardware includes one 10/100BaseT Ethernet port, one RS232 serial port and an internal processor that "glues" network and serial sides together. Internally, the DS202 is based on the <u>EM202 Ethernet Module</u>.

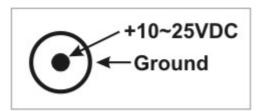

From the hardware standpoint, the DS202 can be viewed as a universal platform suitable for running a variety of network and serial communications-related applications. It is the <u>application firmware</u>, not the hardware that gives the DS202 most of its functionality. The firmware is currently in its 3rd generation ("Release3").

The application firmware of the DS202 can be upgraded through the device's serial port or Ethernet port. Serial upgrades are facilitated by a so-called <u>Monitor</u>- a fixed "service" firmware inside the DS202. Network upgrades rely on the application firmware itself- there is a self upgrade algorithm that will be detailed later. The DS202 is supplied with the application firmware already pre-loaded.

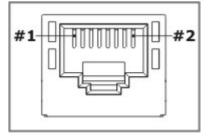
Since most of the DS202's operation is defined by its firmware the major part of the functional description can be found in the

<u>Device Server Application Firmware Manual</u>. This *DS202 Serial Device Server Manual* focuses on the hardware portion of the DS202.

### DS202 connectors and controls




Click on one of the links provided below to learn more about the DS202:

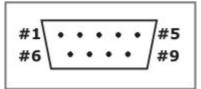

- <u>Power Jack</u> (input power is 10-25VDC, adaptor current rating must be no less than 500mA)
- Ethernet port pin assignment
- <u>RS232 port pin assignment</u>
- <u>Status LEDs</u>
- Setup button

### **Power Jack**

Power Jack of the DS202 accepts "small" power connectors with 3.5mm diameter. Use <u>ARP-P0006</u>, <u>ARP-P0007</u>, or <u>ARP-P0008</u> power adaptor supplied by Tibbo or similar adaptor. Acceptable power supply voltage range is 10-25VDC. Adaptor current rating should be at least 500mA. On the power jack, the ground is "on the outside", as shown on the figure below.



## Ethernet port pin assignment




Ethernet port of the DS202 is of 10/100BaseT type. Connector is of RJ45 type, pin assignment is as follows:

#1	TX+
#2	TX-
#3	RX+
#4	<no connection=""></no>
#5	<no connection=""></no>
#6	RX-
#7	<no connection=""></no>
#8	<no connection=""></no>

### RS232 port pin assignment

DB9M RS232 connector has the following pin assignment:



#### Tibbo Document System

#1	<no connection=""></no>
#2	RX (input)
#3	<b>TX</b> (output)
#4	<no connection=""></no>
#5	Ground
#6	<no connection=""></no>
#7	RTS (output)
#8	CTS (input)
#9	<no connection=""></no>

#### Status LEDs

The DS202 has two pairs of status LEDs: one on the Ethernet connector itself (left side), and one on top of the Device. Both pairs are controlled by the same internal circuitry and exhibit exactly the same behavior.

Status LEDs display various status information depending on what firmware is running at the moment. Follow the links below to learn more about the behaviour of these LEDs under different conditions:

- Status LED behavior in the monitor firmware
- Status LED behavior in the application firmware

There are also two Ethernet Status LEDs- Green and Yellow- located on the Ethernet connector (right side):

- Link/Data LED (green) is turned on when "live" Ethernet cable is plugged into the Module. The LED is temporarily switched off whenever an Ethernet packet is received.
- **100BaseT LED** (yellow) is turned on when the EM202 links with the hub at 100Mb. The LED is off when the link is established at 10Mb.

#### Setup button

The setup button is located next to the Ethernet port of the DS202.

The Button is used to select an operating mode of the DS202:

- When the DS202 is powered up with the button pressed it enters a serial upgrade mode in which new <u>application firmware</u> file can be uploaded into the DS202 through its serial port. If the DS202 is powered up with the setup button not pressed the Device proceeds to running its current application firmware. This functionality is delivered by the <u>Monitor firmware</u> component of the DS202.
- When the <u>application firmware</u> is already running the setup button is used to make the DS202 enter the <u>serial programming mode</u> (hence, the name of a button)*.

* Strictly speaking, this is a functionality that is defined by the application firmware, not the DS202 hardware.

# Specifications and DS202 modifications

The DS202 has one submodel in circulation- DS202R-00.

Device specifications are presented in the table below.

Parameter	DS202R-00
Ethernet interface	10/100BaseT Ethernet
Serial interface and I/O lines	RS232 (TX,RX,RTS,CTS,DTR,DSR)
Routing buffers size	12Kbytes x 2*
Power requirements	DC 10-25V, use adaptor with current rating of at least 500mA
Operating temperature	-5 to +70 degrees C
Operating relative humidity	10-90%
Mechanical dimensions	60x47x30mm
Carton dimensions ("bare" DS202)	125x95x52mm
Gross weight ("bare" DS202)	110g.
Carton dimensions (DS202-KIT)	325x45x90mm
Gross weight ( <u>DS202-KIT</u> )	950g.

* Maximum possible buffer size. Actual size may be smaller depending on how much RAM is "consumed" by the firmware

## **Kits and Accessories**

Tibbo supplies the following Accessories:

- WAS-P0004(B) DS-to-device serial cable (replaces now obsolete WAS-1404)
- WAS-P0005(B) DS-to-PC serial cable (replaces now obsolete WAS-1455)
- WAS-1499 "straight" Ethernet cable (DS-to-hub cable)
- WAS-1498 "crossover" Ethernet cable (DS-to-device cable)
- TB100 Terminal Block Adaptor
- 12VDC/500mA Power Adaptors
- DMK100 DIN Rail/Wall Mounting Kit

#### The following Starter Kits are available:

- **DS100R-SK Starter Kit.** The Kit includes all necessary parts for evaluation of the <u>DS100R Serial Device Server</u>:
  - <u>DS100R Serial Device Server;</u>
  - <u>WAS-P0004(B) DS-to-device serial cable;</u>
  - WAS-P0005(B) DS-to-PC serial cable;
  - WAS-1499 "straight" Ethernet cable;
  - <u>WAS-1498</u> "crossover" Ethernet cable;
  - <u>12VDC/500mA Power Adaptor</u>.

#### **Tibbo Document System**

- **DS202R-SK Starter Kit.** The Kit includes all necessary parts for evaluation of the <u>DS202R Serial Device Server</u>:
  - DS202R Serial Device Server;
  - WAS-P0004(B) DS-to-device serial cable;
  - WAS-P0005(B) DS-to-PC serial cable;
  - WAS-1499 "straight" Ethernet cable;
  - <u>WAS-1498 "crossover" Ethernet cable;</u>
  - <u>12VDC/500mA Power Adaptor</u>.
- DS100B-SK Starter Kit. The Kit includes all necessary parts for evaluation of the DS100B Serial Device Server:
  - <u>DS100B Serial Device Server</u>;
  - WAS-P0004(B) DS-to-device serial cable;
  - WAS-P0005(B) DS-to-PC serial cable;
  - WAS-1499 "straight" Ethernet cable;
  - WAS-1498 "crossover" Ethernet cable;
  - <u>12VDC/500mA Power Adaptor;</u>
- <u>TB100 Terminal Block Adaptor</u>.
- **EM202-SK Starter Kit.** The Kit includes all necessary parts for evaluation of the <u>EM202 Ethernet-to-serial Module</u>:
  - <u>EM202-EV-RS Evaluation Board</u> with one <u>EM202 Module</u> (soldered in);
  - WAS-P0004(B) DS-to-device serial cable;
  - WAS-P0005(B) DS-to-PC serial cable;
  - WAS-1499 "straight" Ethernet cable;
  - WAS-1498 "crossover" Ethernet cable;
  - <u>12VDC/500mA Power Adaptor</u>.
- EM200-SK Starter Kit. The Kit includes all necessary parts for evaluation of the EM200 Ethernet-to-serial Module:
  - <u>EM120/EM200-EV Evaluation Board</u> with one <u>EM200 Module</u> (installed on a socket);
  - WAS-P0004(B) DS-to-device serial cable;
  - WAS-P0005(B) DS-to-PC serial cable;
  - WAS-1499 "straight" Ethernet cable;
  - WAS-1498 "crossover" Ethernet cable;
  - <u>12VDC/500mA Power Adaptor</u>.
- EM120-SK Starter Kit. The Kit includes all necessary parts for evaluation of the EM120 Ethernet-to-serial Module:
  - <u>EM120/EM200-EV Evaluation Board</u> with one <u>EM120 Module</u> (installed on a socket);
  - <u>WAS-P0004(B) DS-to-device serial cable;</u>

57

- WAS-P0005(B) DS-to-PC serial cable;
- WAS-1499 "straight" Ethernet cable;
- <u>WAS-1498 "crossover" Ethernet cable;</u>
- <u>12VDC/500mA Power Adaptor</u>.
- EM100-SK Starter Kit. The Kit includes all necessary parts for evaluation of the EM100 Ethernet-to-serial Module:
  - EM100-EV Evaluation Board with one EM100 Module (installed on a socket);
  - WAS-P0004(B) DS-to-device serial cable;
  - WAS-P0005(B) DS-to-PC serial cable;
  - WAS-1499 "straight" Ethernet cable;
  - WAS-1498 "crossover" Ethernet cable;
  - <u>12VDC/500mA Power Adaptor</u>.

## WAS-P0004(B) DS-to-device serial cable

WAS-P0004(B) is a female-male serial cable that can be used to connect Tibbo Device Server or Board to the serial port of your device.

DB9M (Male)	DB9F (Female)
#2	#2
#3	#3
#4	#4
#5	#5
#6	#6
#7	#7
#8	#8

The cable is of **blue color**, approximately 1.5m long.

### WAS-1404 DS-to-device serial cable

#### This cable is now obsolete and superseded by <u>WAS-P004(B)</u>.

WAS-1404 is a female-male serial cable that can be used to connect Tibbo Device Server or Evaluation Board to the serial port of your device.

DB9M (Male)	DB9F (Female)
#2	#2
#3	#3
#5	#5
#7	#7
#8	#8

The cable is of black color, approximately 1.5m long. Notice, that the cable doesn't

have DTR/DSR lines!

# WAS-P0005(B) DS-to-PC serial cable

WAS-1455 is a female-female cable that can be used to connect Tibbo Device Server or Evaluation Board to the COM port of your PC.

DB9F (Female)	DB9F (Female)
#2	#3
#3	#2
#4	#6
#5	#5
#6	#4
#7	#8
#8	#7

The cable is of green color, approximately 1.5m long.

# WAS-1455 DS-to-PC serial cable

### This cable is now obsolete and superseded by <u>WAS-P005(B)</u>.

WAS-1455 is a female-female cable that can be used to connect Tibbo Device Server or Evaluation Board to the COM port of your PC.

DB9F (Female)	DB9F (Female)
#2	#3
#3	#2
#5	#5
#7	#8
#8	#7

The cable is of white color, approximately 1.5m long. Notice, that the cable doesn't have DTR/DSR lines!

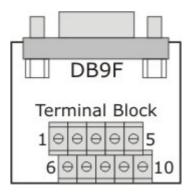
# WAS-1499 "straight" Ethernet cable

WAS-1499 can be used to connect Tibbo Device Server or Evaluation Board to an Ethernet hub.

Side A	Side B
#1 (pair 1)	#1
#2 (pair 1)	#2
#3 (pair 2)	#3
#6 (pair 2)	#6

The cable is of blue color, approximately 1.5m long.

# WAS-1498 "crossover" Ethernet cable


WAS-1499 can be used to connect Tibbo Device Server or Evaluation Board directly to some other Ethernet device (i.e. Ethernet port of the PC). This is a so called "crossover" cable that can interconnect two Ethernet devices without a hub.

Side A	Side B
#1 (pair 1)	#3
#2 (pair 1)	#6
#3 (pair 2)	#1
#6 (pair 2)	#2

The cable is of green color, approximately 1.5m long.

# **TB100 Terminal Block Adaptor**

The TB100 Terminal Block Adaptor attaches to the DB9M serial port connector. The TB100 provides a convenient way of attaching wires in RS422 and RS485 systems. The wires are inserted into the terminal contacts and the terminals are then tightened using a screwdriver.



The following table details terminal block contact functions in case the terminal block is connected to the  $\underline{DS100}$ :

	DS100R	DS100B		
	RS232 (full-duplex op.)	RS232 (full-duplex op.)	RS422 (full-duplex op.)	RS485 (half-duplex op.)
#2	<no connection=""></no>	<no connection=""></no>	RTS- (output)	<no connection=""></no>
#7	<b>RX</b> (input)	RX (input)	<b>RX-</b> (input)	RX- (input)
#8	<b>TX</b> (output)	<b>TX</b> (output)	TX+ (output)	TX+ (output)
#9	<no connection=""></no>	<b>DTR</b> (output)	<b>TX-</b> (output)	TX- (output)
#10	Ground	Ground	Ground	Ground
#6	<no connection=""></no>	DSR (input)	<b>RX+</b> (input)	RX+ (input)
#1	<b>RTS</b> (output)	<b>RTS</b> (output)	RTS+ (output)	<no connection=""></no>
#3	CTS (input)	CTS (input)	CTS+ (input)	<no connection=""></no>
#4	<no connection=""></no>	<no connection=""></no>	CTS- (input)	<no connection=""></no>

As explained in serial port pin assignment the DS100B supports half-duplex RS485

#### 61 Tibbo Document System

communications, but the RX and TX line pairs on the DB9M connector of the DS100B are separated. In order to arrange a half-duplex two-wire RS485 bus you need to externally connect RX+ to TX+ and RX- to TX-. On the TB100 this is conveniently done by closing (putting to ON position) two switches- SW1 and SW2- located on the back of the TB100.

Additionally, the TB100 provides termination circuits typically needed at the end of the RS422 or RS485 bus. There are four identical terminators that can be switched on individually using switches located on the back of the TB100. The following table details which line pairs the terminators can be connected to:

SW3	CTS+/CTS-
SW4	RTS+/RTS-
SW5	RX+/RX-
SW6	TX+/TX-

Schematic diagram for one of the terminators is shown on figure below.

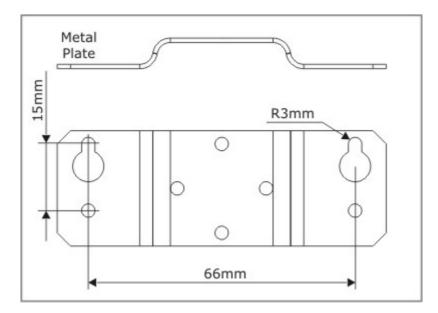


Notice, that if you are using RS485 half-duplex mode (SW1 and SW2 are closed) and you want to terminate the RS485 bus, then you only need to close either SW5 or SW6. Having both switches closed will effectively add two termination circuits to the bus!

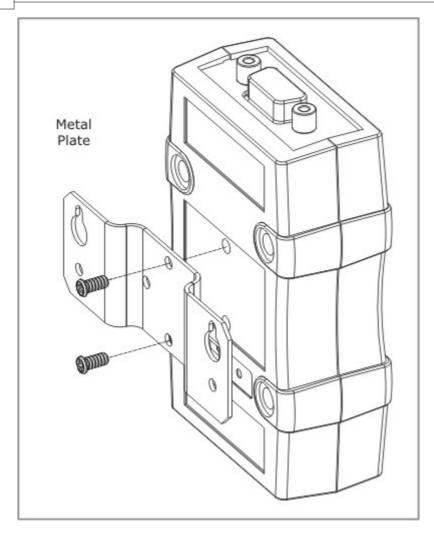
## 12VDC/500mA Power Adaptor

Six different Adaptor models are supplied:

DS100R/B, EM120/EM200-EV, EM100-EV ("large" connector, 5.5mm in diameter)					
U.S. style European style U.K. style					
ARP-1014 ARP-1015A ARP-1018A					
DS202R, EM202-EV-RS, EM202-EV-TM ("small" connector, 3.5mm in diameter)					
U.S. style	European style	U.K. style			
ARP-P0006 ARP-P0007		ARP-P0008			

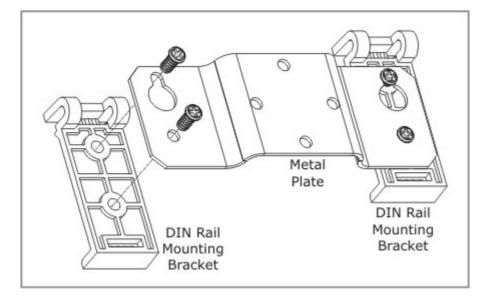

# DMK100 DIN Rail/ Wall Mounting Kit

DMK100 DIN Rail/Wall Mounting Kit is used for wall or DIN-rail mounting of  $\underline{DS100}$  and  $\underline{DS202}$  Serial Device Servers. The kit includes:

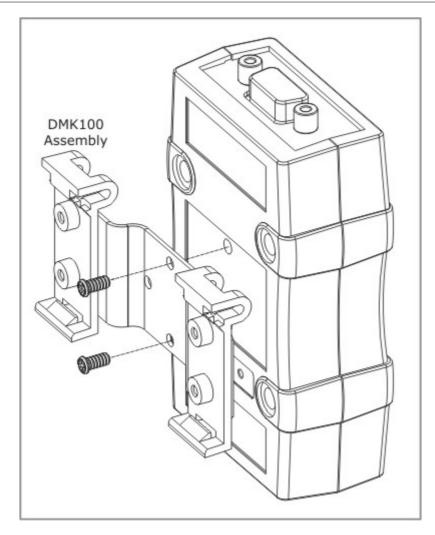

- Metal Plate x1
- DIN Rail Mounting Bracket x2
- Screw x6

#### Wall installation of the DS100/DS202

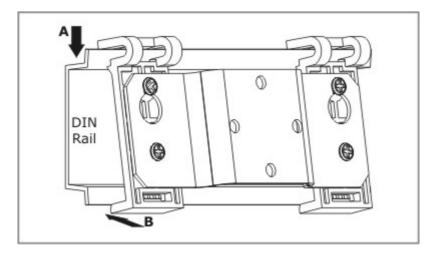
The Metal Plate has two pairs of mounting holes- one for "permanent" installation and another one for "easy removal".




Attach the Metal plate to the DS100/DS202 as shown below.




### DIN Rail installation of the DS100/DS202


First, assemble the parts as shown on Figure below.



Next, attach the Metal Plate to the DS100/DS202:



Latch the DS100/DS202 onto the DIN Rail as shown below. **IMPORTANT!** Be careful when removing the DS100/DS202 from the DIN rail. Applying too much force may damage the Mounting Brackets or render them too loose.



# **Firmware Manuals**

This part of the documentation describes all firmware components related to Tibbo Device Servers.

Three firmware components are currently available:

- **Monitor** is a "fixed" firmware that is responsible for starting the application firmware and firmware upgrades through the serial port of the Device Server.
- **Device Server Application Firmware** (currently in its **Release3**) is what gives Tibbo Device Servers their functionality. The firmware can be uploaded into the Device Server through its serial port or through the network. Firmware release history can be found <u>here</u>.
- **NetLoader** is a firmware component that facilitates application firmware upgrades through the network in the following devices: EM100-03, DS100R-03, DS100B-00. Like the application firmware itself, the NetLoader can be uploaded into the Device Server through the serial port (but not through the network- the NetLoader cannot network-upgrade itself!).

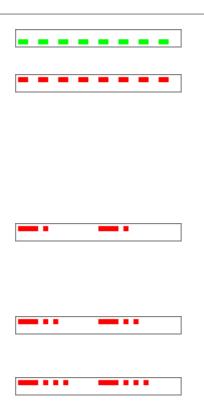
All EM100-03, DS100R-03, DS100B-00 devices come from the factory with the NetLoader already installed. Certain earlier devices- *EM100-00/ -01/ -02, DS100-00/ -01/ -02-* cannot be upgraded through the network at all. All other devices have "self-upgrading" firmware that doesn't require the NetLoader.

# Monitor (for serial firmware upgrades)

The Monitor is a fixed firmware component inside Tibbo Device Server (DS) that is responsible for booting up the DS, verifying and starting <u>application firmware</u>, and also performing application firmware upgrades via the serial port of the DS.

# **Status LED signals**

Tibbo Device Servers ("DS") feature two status LEDs*- Status Red (SR) and Status Green (SG)- that display various states of device operation. DS states are indicated by way of playing "LED patterns". Patterns in this topic are represented graphically in the following manner:


The pattern above means that both green and red status LEDs blink together three times. The following pattern means that red LED makes one long blink followed by two short ones:

			•							
--	--	--	---	--	--	--	--	--	--	--

When the Monitor is running status LEDs display a number of conditions:

**....** 

**Fast-blinking pattern** means that neither <u>application firmware</u>, nor the <u>NetLoader</u> can be found in the FLASH memory of the DS. The way out of this situation is to upload application firmware and the NetLoader into the device via its serial port (see <u>serial upgrade mode</u>, also <u>upgrading DS firmware</u>).



**Slow-blinking Green Status LED** means that the serial upgrade was completed successfully.

**Slow-blinking Red Status LED** means that there was a timeout while waiting for the XMODEM data. If this happens right in the beginning of the serial upgrade then most probably this is caused by incorrect serial settings on the PC side, incorrect serial cable wiring, or incorrect XMODEM start procedure- XMODEM must be started on the PC first, and only then the DS is switched on (with he Setup button pressed).

**Communications error.** This pattern means that an error was detected on the protocol level in XMODEM communications. Most often this means that incorrect communications parameters are set on the PC side.

**Firmware file is too big.** This pattern means that the file you are trying to upload into the DS is too big. Check if you have selected a correct file.

**FLASH failure.** This pattern means that internal FLASH memory of the DS is malfunctioning.

# **DS** startup procedure

#### The following describes what happens when the Device Server is powered up:

- After the powerup the Monitor starts running.
- The first thing that is verified is whether the <u>Setup button</u> is pressed (on EM100, EM120, EM200, EM202- whether the <u>MD line</u> is low). If yes then the Monitor goes into the firmware upgrade mode and is ready to receive new application firmware file through the serial port of the DS (see <u>serial upgrade mode</u>).
- If the <u>Setup button</u> is not pressed the Monitor verifies the presence and validity of the <u>application firmware</u>. If the firmware checks OK the control is passed to it and the DS starts running its application.
- If the <u>application firmware</u> is not present or invalid the Monitor verifies the presence and validity of the <u>NetLoader</u>. If the NetLoader checks OK the control is passed to it and the DS starts waiting for the application firmware upload over the network.
- If the NetLoader is not present or invalid the Monitor displays the "no firmware loaded" pattern (shown below) and halts.

.....

This is a "fast-blinking" pattern that means that the DS doesn't have any firmware to run. Click <u>here</u> to see all available patterns.

In simple terms, the Monitor always attempts to make the DS as accessible as possible. It runs the <u>application firmware</u> if available and, if not, the <u>NetLoader</u> if

#### Tibbo Document System

present. The Monitor halts if neither application firmware, nor the NetLoader are available.

## Serial upgrade mode

67

In the serial upgrade mode the application firmware file can be uploaded into the Device Server through the serial port. The upload mechanism uses a simple and popular XMODEM protocol. Communications parameters are 38400-8-N-1.

The XMODEM upload is initiated by the Device Server side. When the DS boots up with the <u>Setup button</u> pressed (on EM100, EM120, EM200, EM202- with the <u>MD line</u> pulled low) the Monitor enters the serial upgrade mode and sends the first character in the XMODEM exchange (SOH character, ASCII code 01). When the "sending side" receives this character it starts uploading the file into the DS.

Serial firmware upgrades can be performed from any communications software that supports XMODEM protocol, such as a *HyperTerminal* (supplied with *Windows* OS). Tibbo's own <u>DS Manager</u> (part of the <u>Device Server Toolkit</u>) also supports serial upgrades- see <u>upgrading DS firmware</u>.

A number of errors can be displayed by the Monitor while in the serial upgrade mode. These errors are displayed in the form of "patterns" that are "played" on the Red and Green Status LEDs of the DS. See <u>status LED signals</u> for details.

# **Device Server Application Firmware (V3.14/V3.51)**

Application firmware is what turns Tibbo hardware into a fully-functional Device Server (DS). Tibbo Device Servers usually ship from the factory with the latest *officially released* application firmware pre-installed (unless an alternative version is explicitly specified by the Customer).

This Manual describes application firmware V3.14 and 3.51. Firmware revision history can be found <u>here</u>.

- **V3.14** is a part of **Release3** branch of application firmware. This firmware runs on the first generation of Tibbo Device Servers. 3.1x is currently reaching its maturity so you won't see a lot of new features released within 3.1x branch in the future. V3.1x is available in "w", "s", and "sn" builds. Table below details which build should be used for which models of Tibbo Device Servers
- V3.51 is a part of Release3.5 branch of application firmware. This firmware runs on the second generation of Tibbo Device Servers. Release3.5 is an intermediary version that precedes the release of a future major firmware update dubbed "ReleaseV" (there will be no Release4 in between). V3.5x is available in "r" and "d" builds. Table below details which build should be used for which models of Tibbo Device Servers

As active firmware development continues, Release3.5 (and subsequent ReleaseV) will gain numerous and powerful advantages over V3.1x. New features of Release3.5 that are not supported by earlier firmware versions are clearly marked as **supported by firmware V3.50 and above** throughout this Manual. The list of differences between first- and second-generation firmware can be found <u>here</u>.

Table below details firmware version/build compatibility:

First-generation devices (work with firmware V3.1x firmware)				
EM100-00, -01, -02; DS100R-00, -01, -02	EM3.1xW (serial upgrades only)			
EM100-03; DS100R-03; DS100B-00*	EM3.1xS (serial/network upgrades) EM3.1xSN (serial upgrades)			
Second-generation devices (work with firmware V3.5x firmware)				
EM120-00	EM3.5xR (serial/network upgrades)			
EM200-00; EM202-00; EM202-EV- <i>xx</i> -00; DS202R-00	EM3.5xD (serial/network upgrades)			

* These devices support network upgrades through a separate firmware component called <u>NetLoader</u>. This component can only be uploaded into the DS through the serial port. "SN" build for serial upgrades contains application firmware **and** the NetLoader. "N" build for network upgrades only contains application firmware ("SN" build cannot be used for network upgrades because the NetLoader cannot upgrade itself).

Notice that certain Boards- EM100-EV and EM120/EM200-EV- are not included in the table above. This is because these Boards have sockets for Module installation. Therefore, the type of file you should use depends on a currently installed Module, not the Board itself.

# Additional features in firmware V3.5x

This section details the difference between "older" firmware (up to but not including V3.50) that runs on first-generation Devices such as  $\underline{DS100}/\underline{EM100}$  and "newer" firmware (V3.50 and above) that runs on second-generation Devices such as  $\underline{DS202}/\underline{EM202}$ .

Second-generation firmware maintains full backward compatibility with the previous firmware releases while adding the following additional features:

- Support for larger <u>routing buffers</u>
- Additional network programming method called <u>telnet programming</u>
- Ability to self-upgrade itself over the network (first-generation firmware relied on a separate firmware component called the <u>NetLoader</u>)

## **Status LED signals**

Tibbo Device Servers ("DS") feature two status LEDs*- Status Red (SR) and Status Green (SG)- that display various states of device operation. DS states are indicated by way of playing "LED patterns". Patterns in this topic are represented graphically in the following manner:

The pattern above means that both green and red status LEDs blink together three times. The following pattern means that red LED makes one long blink followed by two short ones:



Status LEDs of the DS display a number of conditions, some of which can exist at the same time. Because status LEDs can reflect only one condition at any given time there is a certain hierarchy that defines which conditions are more important and displayed in favor of other conditions.

#### 69 Tibbo Document System

Listed below are all patterns generated by this firmware**. Patterns are arranged in order of decreasing priority. For example, serial programming mode pattern is listed above the error mode pattern which means that if the DS is running in the <u>serial programming mode</u> and <u>error mode</u> at the same time it is the serial programming mode pattern that will be played by the status LEDs.

**Powerup pattern.** This pattern is played once when the DS is switched on.

**Buzz pattern.** Both LEDs blink fast- this pattern is played when the DS receives the **Buzz (B) command**. This is used to identify a particular DS.

**Serial programming mode.** This condition corresponds to the value 'S' of the *s* flag returned by the **Echo (X) command**.

**<u>Error mode</u>**. This condition corresponds to the value 'E' of the *e* flag returned by the **Echo (X) command**.

**Ethernet port failure.** Indicates that the Ethernet port hardware is malfunctioning and network communications with the DS is not possible. This condition corresponds to the value 'N' of the **e** flag returned by the *serial* **Echo (X) command**.

**IP-address not obtained.** Means that the **DHCP (DH) setting** is 1 (enabled) and the DS has not yet obtained its IP-address from the DHCP server. This condition corresponds to the value '*' of the *i* flag returned by the *serial* **Echo (X) command**.

**Data connection is closed.** This pattern means that no <u>data connection</u> (TCP or UDP) with any network host is currently established. This condition corresponds to the value '*' of the *c* flag returned by the <u>Echo (X) command</u>.

**Sending ARP.** Displayed when the DS is sending ARP requests to find out the MAC-address of the destination network host with which the DS is about to establish a connection. This condition corresponds to the value 'A' of the *c* flag returned by the <u>Echo (X) command</u>.

**TCP connection is being opened.** Indicates that  $\underline{\text{TCP connection}}$  (either incoming or outgoing) is being established (i.e. SYN-SYN-ACK exchange is in progress). This condition corresponds to the value 'O' of the *c* flag returned by the **Echo (X) command**. Condition is not possible for

UDP data connections because there is no connection establishment phase for UDP.

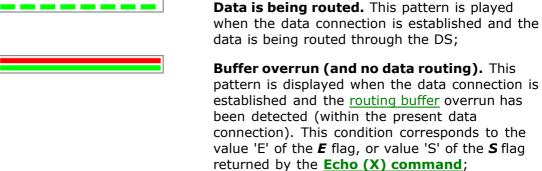
Data connection is established (or being

.....



.....

. . . . . . . . . . . . . . . . .


. . .







closed). Means that data UDP "connection" or TCP connection is currently established or that TCP connection is being closed (i.e. FIN-ACK-FIN-ACK exchange is in progress). This condition corresponds to the value 'C' of the *c* flag returned by the Echo (X) command for TCP data connections, and 'U' for UDP data connections. When the data connection is established the following patterns are additionally displayed:



...

been detected (within the present data connection). This condition corresponds to the value 'E' of the *E* flag, or value 'S' of the *S* flag

**Buffer overrun + data routing.** Data routing and overrun can be displayed at the same time.

TCP connection reset by the network host. Means that the TCP connection has been reset (using RST packet) by the network host (not by the DS itself). This condition corresponds to the value 'R' of the *c* flag returned by the serial **Echo (X) command**.

* For "module" EM100, EM120, EM200, EM202 there are two control lines to connect external status LEDs.

** Patterns related to the NetLoader and MainLoader are not shown here!

# Operation

...

The DS has two ports- Ethernet port and serial port. Typically, the serial port of the DS is connected to a certain serial device ("attached serial device"). Ethernet port links the DS to the Ethernet (TCP/IP) network (see figure below). Potentially, any network host (including another DS) on the network can communicate with the DS and the serial device "behind" it.

The job of the DS (i.e. the firmware described in this *Manual*) is to ensure transparent communications between the network host and the attached serial device by routing the data between the Ethernet and serial ports of the DS. Routing means that the data received into the Ethernet port is sent out via the serial port and vice versa. Routing is effected through two routing buffers- one for each routing direction*. In addition to routing the serial data itself, the DS allows the network host and the attached serial device to exchange the state of RTS, CTS, DTR, and DSR lines.

#### DS operation is governed by settings, parameters, and instructions:

**Settings** are *permanent functioning parameters* that are stored in the non-volatile memory (EEPROM) of the DS. Once programmed, they remain intact even when the DS is powered off. Many (but not all) settings require the DS to be rebooted for the new setting value to take effect. For example, the **Baudrate (BR) setting** defines

#### 71 Tibbo Document System

the baudrate of the serial port. When the DS boots up it sets the baudrate of its serial port according to the value of this setting.

**Parameters** are *temporary overrides* for settings. Parameters are not saved into the EEPROM and have immediate effect (no rebooting required). For example, there is a **Baudrate (BR) parameter** that can be used to immediately change communications speed of the serial port (and override the permanent value defined by the **Baudrate (BR) setting**).

**Instructions** are used to make the DS perform a certain action. For example, **Establish Connection (CE) instruction** makes the DS establish a data connection with a specified network host.

Because parameters can override settings this *Manual* will sometimes make references to *current* values. For example, **current Baudrate (BR)** will mean, quite literally, the baudrate at the moment, regardless of what caused it to be such- a permanent value obtained from the setting or a temporary overriding parameter value.

Settings and parameters are manipulated and instructions are issued by sending commands to (and getting replies from) the Ethernet or serial port of the DS- the process that will be referred to as <u>programming</u>.

* The size of routing buffers is hardware-dependent and is different for different models and modifications of Tibbo Device Servers. Routing buffer size can be verified using the **<u>Status (U) command</u>**.

### Ethernet port and network communications

Just like any other Ethernet device, the DS has a unique *MAC-address* (defined by the **MAC-address (FE) setting**) and must be assigned a valid *IP-address* (defined by the **IP-address (IP) setting**) to function properly on the network. Unique MAC-address is preset during the production. Assigning a valid IP-address is the responsibility of the user. IP-address can be assigned manually or automatically, through <u>DHCP</u> (must be enabled through the **DHCP (DH) setting**).

To route the data between attached serial device and the network host the DS needs to establish and maintain a *data connection*. Depending on **current Transport Protocol [setting/ parameter]** the data connections can use TCP/IP or UDP/IP.

The DS only allows for a single data connection. This is because the serial port is not a shared media and cannot be controlled by more than a single network source at any given time. This is analogous to the COM port of the PC, which can only be opened by one program at a time.

The DS is capable of both accepting incoming connections (passive opens) and establishing outgoing connections of its own (active opens). Whether passive and/or active opens are allowed is defined by the **current Routing Mode [setting/parameter]**.

Passive opens, when allowed, are accepted from any network host as long as it uses correct transport protocol and connects to a correct *data port* (defined by the **Data Port (DP) setting**). When performing an active open the DS attempts to connect to the **current Destination IP-address (DI)** 

[setting/parameter/instruction] and current Destination Data Port (DP) [setting/parameter/instruction]. When the destination is located on a different subnet, which is derived from comparing the destination IP-address, IP-address of the DS itself, and the *netmask* (defined by the <u>Netmask (NM) setting</u>), the DS connects through the *gateway* (defined by the <u>Gateway IP-</u> <u>address (GI) setting</u>). Exactly when the DS attempts to establish an outgoing connection (when such connections are allowed) depends on the selected *connection mode* (see **Connection Mode (CM) setting**). Attached serial device can optionally control and monitor connection establishment and termination through a dedicated set of instructions known as *modem commands* (serial-side parameters and instructions), or through the *DSR line* manipulation (when enabled through the **Connection Mode (CM) setting**) and *DTR line* monitoring (see **DTR mode (DT) setting**). Data connections can also be closed automatically, on timeout (see **Connection Timeout (CT) setting**).

Besides the user-definable data port there are also two identical *UDP command ports* with numbers 65535 (FFFF Hex) and 32767 (8FFF Hex). <u>Network programming</u> of the DS is effected by sending programming commands (as <u>UDP datagrams</u>) to either port. Additionally, programming commands can be sent (under certain conditions) right within the data connection itself- see <u>inband (TCP) commands</u> and <u>command-phase (TCP) commands</u>.

Programming of the DS and data routing can be performed concurrently, these processes are completely independent from each other.

The DS also supports ARP and ICMP protocols- it can be PINGed just like any other network device.

# **UDP data "connections"**

This topic details UDP data connections (**current Transport Protocol (TP)** [setting/ parameter] = 0).

The notion of data connection is native to TCP/IP since this is a connection-based protocol. UDP/IP, however, is a connection-less protocol in which all packets (UDP datagrams) are independent from each other. How, then, the term "DS data connection" applies to the UDP transport protocol?

With UDP transport protocol true data connections (in the "TCP sense" of this term) are not possible (hence, parenthesis around the word "connection"). The DS, however, attempts to mimic the behavior of TCP data connection whenever possible. Follows is the detailed description of UDP "connections" and their similarities and differences from TCP connections.

**Incoming "connections"*.** There is no connection establishment phase in UDP so an incoming UDP "connection" is considered to be "established" when the first UDP packet is received by the DS from the network host (on the port defined by the **Data Port Number (PN) setting**). Similarity with TCP is in that after having received the packet from the network host the DS knows who to send its own UDP packets to.

**Outgoing "connections"**.** The DS establishes outgoing UDP connection by sending a UDP datagram to the targeted destination (defined by the **current Destination IP-address (DI) [setting/parameter/instruction]** and **current Destination Data Port (DP) [setting/parameter/instruction]**. If there is a data that the DS needs to send to the network host then the DS sends the first UDP datagram with (part of) this data. If there is no immediate data that needs to be sent to the network host then the DS sends the first UDP datagram of zero length. This happens when the **Connection Mode (CM) setting** is 0 (connect immediately). The purpose of this is to let the other side know the MAC-address, IP-address, and the data port of the DS.

**Data transmission and destination switchover.** Once the "connection" is established the DS and the network host can exchange the data. The difference with TCP is that if another network host sends a datagram to the DS then the DS

will interpret this as a new incoming "connection"*, forget about the IP-address of the first network host and start sending its own UDP datagrams to the IP-address of the second network host. In other words, the DS will always send its own UDP datagrams to the IP-address of the "most recent sender". The only exception is the case when the **current Destination IP-address** is 255.255.255.255-see <u>broadcast UPD communications</u>.

The situation with the port to which the DS will address its UDP datagrams is a little bit more complex and depends on the **current Routing Mode (RM)** [setting/parameter]:

- When the **current Routing Mode** is 0 (server) the DS sends its own UPD datagrams to the port number from which the most recent incoming data UDP packet was received. In other words, the DS always switches over not only to the IP-address of the most recent sender, but also to the port number of the most recent sender.
- When the current Routing Mode is 1 (server/client) or 2 (client) the DS always sends its UDP datagrams to the port number specified by the current Destination Data Port (DP) [setting/parameter/instruction]. This means that even if the DS switches over to the IP-address of the most recent sender (i.e. when there is an incoming data UDP packet in the server/client routing mode) it will still address its own UDP datagrams to the destination data port.

**"Connection" termination.** There is no connection termination phase in UDP so DS "terminates" its UDP connections by simply forgetting about them and the only event that can trigger UDP "connection" termination is connection timeout (defined by the **Connection Timeout (CT) setting**).

* Assuming that incoming connections are allowed (i.e. **current Routing Mode** [setting/parameter] is either "server", or "server/client").

** Assuming that outgoing connections are allowed (i.e. **current Routing Mode** [setting/parameter] is either "client", or "server/client").

# **Broadcast UDP communications**

With UDP transport protocol (**current Transport Protocol (TP)** [<u>setting</u>/ <u>parameter</u>]= 0) it is possible to send and receive broadcast UDP datagrams.

Sending broadcast UDP datagrams. When current Destination IP-address (DI) [setting/parameter] is 255.255.255.255 the DS sends out its own UDP datagrams as link-level broadcasts i.e. with destination MAC-address of UDP datagrams set to 255.255.255.255.255.255.255.255. The DS continues to broadcast its data even if it receives an incoming UDP datagram. In other words, the DS doesn't switch over to the most recent sender as described in UDP data "connections".

**Receiving broadcast UDP datagrams.** Whether or not the DS will accept data UDP datagrams sent in the broadcast mode is defined by the **Broadcast UDP (BU) setting**.

# **TCP data connections**

This Section details TCP data connections (**current Transport Protocol (TP)** [setting/ parameter] = 1).

# TCP protocol implementation in the DS has the following differences from the standard:

**TCP reconnects.** When the data TCP connection between the DS and the network host is already established and another network host (with a different IP-address)

attempts to connect to the data port of the DS this connection attempt is rejected (because the DS only allows for a single data connection at a time). However, if the second connection is attempted from the same IP-address (as the IP-address with which existing TCP connection is established) then the DS will "switchover" to this new connection. This means that the DS will forget the first connection and accept the second one. Such behavior is implemented to avoid DS stalling by hanged connection. Consider this scenario: the application on the network host has a TCP connection to the DS in progress. Suddenly, the application crashes- connection is left hanging because it wasn't properly terminated. When the application is relaunched it attempts to establish a TCP connection with the DS again. If the reconnect feature wasn't implemented the DS would have considered this to be an attempt to establish a second concurrent data connection and would have rejected it. Owing to reconnect feature the DS will recognise that this new connection attempt has originated from the same IP-address and switch over to this new connection. The downside of this arrangement is that two (or more) applications communicating with the DS from the same host can interfere with each other's connections- each new connection attempt will take over the existing one.

**TCP retransmissions.** Standard protocol implementation defines "exponential backoff" retransmit times whereas each subsequent retransmissions is attempted after a longer and longer periods of time. Such behaviour is not very suitable for real-time systems. For any situation that requires a TCP packet to be retransmitted the DS will perform five retransmission attempts at even, 2.5 second, intervals.

# DHCP

The DS supports Dynamic Host Configuration Protocol (DHCP). DHCP is used to automatically configure the following settings: **IP-address (IP)**, **Gateway IPaddress (GI)**, and **Netmask (NM)**. For the DHCP to work there must be a *DHCP* server on the network where the DS is installed.

The DHCP is enabled and disabled through the **DHCP (DH) setting**. When **DHCP (DH) setting** is at 1 (enabled) the DS uses DHCP protocol to obtain its IP-address immediately upon startup. The DS does not start its normal operation until it receives an IP-address from the DHCP server. Gateway IP-address and netmask configuration is optional so the DS does not *require* these two parameters to be received from the DHCP server.



"IP-address not obtained" pattern is displayed by the status LED's of the DS while the IP-address is being configured through DHCP. This condition corresponds to the value '*' of the *i* flag returned by the **Echo (X) command**.

When requesting an IP-address for itself, the DS asks for a maximum possible *lease time* (this is the period of time during which the DS will be allowed to use the IP-address). The DS memorizes the lease time actually offered by the DHCP server and applies for a *lease extension* well before the lease expires. If the lease is extended the DS continues normal operation. If the lease is not extended the DS *reboots*.

While communicating with the DHCP server, the DS supplies its *name*. The name consists of the values of **Owner Name (ON)** and **Device Name (DN)** settings joined by hyphen. For example, the name might look like this:

abccorp-dev1

Names supplied by DHCP clients are usually supplied (by the DHCP server) to a local *DNS server* (DNS and DHCP servers often work together on the same physical server PC). This typically allows you to "see" your DS as a member of your local workgroup,

#### for example:

75

abccorp-dev1.workgroup1.mainserver

# Serial port and serial communications

#### Serial port of the DS has two modes of operation:

**Data routing mode.** Incoming serial data is routed to the Ethernet port and Ethernet data is routed to the serial port. It is in this mode that the DS performs its routing function. After the powerup the DS is running in the data routing mode.

**Serial programming mode.** In this mode the serial port is used for <u>serial programming</u> and all data received into the serial port is interpreted as programming commands.

Data connection with the network host can still be established and maintained while in the serial programming mode but the data received from the network host will be discarded and the data received into the serial port will be interpreted as commands. Therefore, data exchange with the network host and serial programming cannot be concurrent. DS can only perform one of the two at any given time. This is different from the <u>network programming</u> that can be performed concurrently with the data routing.

Operation of the serial port in the data routing mode is governed by several settings (see below), some of which (baudrate, parity, etc.) have corresponding parameters. These parameters are delivered to the DS via the *network* 

**Parameter (P) command** and are commonly known as <u>on-the-fly commands</u> (or, more officially, network-side parameters). On-the-fly commands provide a way for the network host to immediately change communications mode of the serial port without rebooting the DS. There are also network-side instructions

(<u>Set I/O Pin Status (Sx)</u> and <u>Get I/O Pin Status (Gx)</u>) that are used to set and sense the state of RTS, CTS, DTR, DSR, and also additional P0 and P1 lines* of the DS.

#### Serial port of the DS has the following capabilities:

- Half-duplex or full-duplex operation as defined by the <u>Serial Interface (SI) setting</u>;
- Baudrates of up to 115200 bps as defined by the current Baudrate (BR) [setting/ parameter];
- 7 or 8 bits/byte as defined by the current Bits Per Byte (BB) [setting/ parameter];
- Several parity options as defined by the current Parity (PR) [setting/ parameter]**;
- There are also several options related to the RTS, CTS, DTR, and DSR lines:
  - In full-duplex communications the RTS and CTS lines can be programmed to serve as flow control lines between the DS and attached serial device- this is defined by the current Flow Control (FC) [setting/ parameter];
  - In half-duplex serial communications the RTS line serves as a direction control line (see <u>Serial Interface (SI) setting</u> for details). This is why this line is called "RTS/DIR";
  - The CTS line optionally serves as an additional function of selecting between

full- and half-duplex communications (see "auto" selection of the **Serial Interface (SI) setting**).

- DTR line can be programmed to reflect current data connection status- see the <u>DTR Mode (DT) setting</u>;
- DSR line can be programmed to control data connection establishment and termination- see the <u>Connection Mode (CM) setting</u>;
- Once again, the status of RTS and DTR lines can be controlled (set) by another network host using the <u>Set I/O Pin Status (Sx) instruction</u>, while the status of CTS and DSR lines can be monitored (polled) using <u>Get I/O Pin Status (Gx) instruction;</u>
- Additionally, the DS can be programmed to notify another network host of the state changes of its RTS, CTS, DTR, DSR, P0, and P1 lines*. Which lines are monitored for changes is defined by the current Notification Bitmask (NB) [setting/parameter]. Notifications are delivered in the form of Notification (J) messages to the port defined by the Notification Destination (ND) setting.

* Whether or not these lines are physically implemented depends on the DS model.

** There is not way to set the number of stop bits directly but the second stop-bit can be emulated by setting current Parity (PR) to 3 (mark).

*** HI and LOW states are described with respect to the serial ports of DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV. For EM100, EM120, EM200, EM202 the signaling is exactly opposite.

# Opened and closed states of the serial port

Depending on the current setup and data connection state the serial port of the DS may be opened or closed. When the serial port is opened it is ready to record incoming data into the serial-to-Ethernet buffer* when in the data routing mode or accept a serial command when in the serial programming mode. When the serial port is closed it ignores all incoming serial data except the <u>escape sequences</u> (when enabled through the <u>Soft Entry (SE) setting</u>).

#### The following details when the serial port is closed or opened:

- When the serial port is in the <u>serial programming mode</u> it is always **opened** (i.e. ready to accept programming commands);
- When the serial port is in the data routing mode:
  - While the IP-address is being obtained from the DHCP server** the port is closed;
  - After the IP-address has been obtained successfully:
    - If the current Routing Mode (RM) [setting/parameter] is 0 (server):
      - If the data connection is not established the port is **closed**;
      - If data connection is established the port is **opened**;
    - If the current Routing Mode (RM) is 1 (server/client) or 2 (client):
      - If the <u>Connection Mode (CM) setting</u> is 0 (immediately) or 1 (on data or command) the port is **opened**;
      - If the <u>Connection Mode (CM) setting</u> is 2 (on command) or 3 (on command or DSR=HIGH):
        - If the data connection is not established the port is closed;

• If the data connection is established the port is **opened**.

* Not all incoming data will necessarily be recorded into the buffer- see <u>serial-to-</u> <u>Ethernet data routing</u>

** Happens at startup when the **<u>DHCP (DH) setting</u>** is 1 (enabled)

# Data routing 3

Data routing between the Ethernet and serial ports of the DS is effected through two routing buffers*, one for each routing direction. Buffers are necessary because Ethernet and serial ports operate in fundamentally different ways and at different speeds. Ethernet port receives and sends the data in *packets* (groups) while the serial port sends and receives serial data *stream* where each data byte is independent. Here is how the DS transforms Ethernet packets into the serial stream and back:

**Ethernet-to-serial data routing**. The DS outputs the contents of arriving Ethernet data packets byte by byte via the serial port. The DS does not check or filter the contents of the data arriving from the network host.

**Serial-to-Ethernet data routing**. This requires grouping arriving serial data into Ethernet packets of suitable size. Several settings define what data is accepted into the buffer and when and how this data is combined into the Ethernet packets and sent out- see <u>serial-to-Ethernet data routing</u> for details.

Routing buffers are initialized (their data discarded) each time the <u>data connection</u> is closed.

* The size of routing buffers is hardware-dependent and is different for different models and modifications of Tibbo Device Servers. Routing buffer size can be verified using the **Status (U) command**.

# Serial-to-Ethernet data routing

The challenge of serial-to-Ethernet data routing is to choose how to group the serial data into the Ethernet packets of reasonable size. Carrying too little data in each packet increases network load while sending packets with too much data slows down the delivery of this data to the network host (because all this data needs to be accumulated in the buffer first). A dedicated group of <u>packet encapsulation settings</u> controls how and when the serial data is turned into the Ethernet packets and sent out to the network host.

When in the <u>data routing mode</u> the serial port of the DS treats all incoming serial data as a sequence of *serial data blocks**. In many cases serial traffic to and from the attached serial device is structured in some way (i.e. using some sort of data packets). Since it is only logical to apply the same division to the outbound network packets the DS can be programmed to recognize the beginning and the end of serial data blocks. This does not mean that the DS can only work with structured serial data- absolutely random data stream can simply be thought of as one continuous serial data block.

Serial data blocks begin when the *start condition* is detected and end when the *stop condition* is detected. After the start condition is detected the DS begins recording all incoming serial data into the <u>serial-to-Ethernet routing buffer</u>**. Thus, the start condition is said to *open* a data block. When the stop condition is detected the DS stops recording incoming serial data into the buffer (*closes* the serial data block) and *commits* all the data in the serial-to-Ethernet routing buffer. Committed data is the data that the DS will attempt to route to the network host at the earliest possible opportunity. Before the data is committed the DS does not attempt to route it. Therefore, the number of committed bytes in the serial-to-Ethernet buffer may be smaller than the total number of bytes.

The DS ignores all data between the serial data blocks.

Besides the start and stop conditions there is also a *break* condition. When the break condition is detected the DS commits the data in the buffer but does not close the serial data block. Break conditions provide a way to subdivide large serial data blocks.

#### Follows is the description of available start, stop, and break conditions:

**Start conditions.** It is possible to make the DS either open a new serial data block after it receives any character (past the end of the previous data block) or a specific preset character- this is defined by the

**Start On Any Character (SA) setting**. When this setting is 0 (disabled) then two other settings- **Use Start Character (F1)** and **Start Character Code (S1)** are used to enable and select specific start character. New serial data block is opened only if this start character is received. All characters between the end of the previous serial data block and the start character are ignored. Start characters received after the serial data block has been opened are treated as normal data characters and do not "reopen" the serial data block.

**Stop condition** is defined by the stop character which is enabled and selected via two separate settings- <u>Use Stop Character (U1)</u> and <u>Stop Character Code (E1)</u>. When the stop character is disabled no stop conditions are generated at all i.e. once opened, the serial data block never ends. Additionally, the <u>Number Of Post Characters (P1) setting</u> defines the number of characters past the stop character that will be counted as belonging to the same data block.

**Break conditions** are generated depending on two settings:

**Maximum Intercharacter Delay (MD)** and **Maximum Data Length (ML)**. The first one defines the maximum time, in milliseconds, the DS will wait for the arrival of the next serial character. If this time is exceeded the break condition is generated. The second setting defines the number of bytes in the serial-to-Ethernet buffer, which, when exceeded, will generate a break condition.

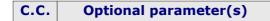
Note, that all settings described above do not directly define the length of individual Ethernet packets generated by the DS, but only define when the data in the serial-to-Ethernet buffer is committed. Once the data is committed the DS will attempt to deliver this data to the network host as soon as possible but not necessarily in one "chunk".

Factory defaults for the packet generation settings provide a simple and usually acceptable schema: start on any character is enabled, stop-character is disabled, maximum intercharacter delay is set to 1 (10ms), and maximum data length is 255 bytes for UDP transport protocol and 127 bytes for TCP (see

**Maximum Data Length (ML) setting** for explanation). This setup is universal and can handle random data of any size. All data is recorded into the serial-to-Ethernet buffer and committed either when the maximum size is reached or when there is a gap in the serial data arrival.

* The term "serial data blocks" was coined to avoid using the word "packets" that

might cause a confusion with the network packets.


** The serial port must be <u>opened</u> for this to happen.

# Programming

79

The DS is programmed using programming commands that can be sent through the <u>serial port</u> of the DS or via the <u>network</u>. For each command the DS issues a reply.

#### All DS commands have the following format:



- **C.C.** is the command code. Command code always consists of a single ASCII character. All available commands and their codes are listed in the command table at <u>commands</u>, <u>messages</u>, <u>and replies</u>.
- **Optional parameter(s)** field contains necessary data if required by the command.

#### All DS replies have the following format:

R.C. Optional data

- **R.C.** is the reply code. Reply codes inform the sender of the command about the result of command execution. All available reply codes are listed in the reply code table at <u>commands</u>, <u>messages</u>, <u>and replies</u>.
- **Optional Data** field contains necessary data if requested by the command.

**Example:** here is a sample exchange between a certain device (performing the programming) and the DS. This device can be a network host (programming through the network) or attached serial device (programming through the serial port):

-->DS: GIP DS-->: A192.168.100.90

In the above example programming device requests the IP-address of the DS. This is done by issuing the <u>Get Setting (G) command</u> with parameter "IP" (for <u>IP-</u> <u>address (IP) setting</u>). The DS replies with the OK (A) reply code indicating that command was processed successfully, followed by the current value of the <u>IP-</u> <u>address (IP) setting</u>, which is 192.168.100.90.

All commands and replies sent to the DS always have the same format, regardless of which interface is used. What is interface-dependent is the encapsulation that is used to mark the beginning and the end of commands (replies) and how these commands and replies are sent. For more information see <u>serial programming</u> and <u>network programming</u>.

# Serial programming

When the DS is powered up its serial port is running in the data routing mode (see <u>serial port and serial communications</u>). To enable DS programming via the serial port the latter must be switched into the *serial programming mode*.



Status LEDs of the DS are playing a *serial programming mode pattern* when the serial port of the DS is in the serial programming mode (click <u>here</u> to see all available patterns).

# There are two methods of putting the serial port of the DS into the serial programming mode:

**By pressing** <u>setup button</u> (for DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV; for EM100, EM120, EM200, EM202- by pulling <u>MD line</u> low for at least 100 ms). This forces the DS to enter the serial programming mode with default communication parameters of 38400-8-N-1, *half-duplex mode* (regardless of the value of corresponding settings). This method always works and cannot be disabled.

**By sending an escape sequence to the serial port** (at a current baudrate). Once the escape sequence is recognized the DS will enter the serial programming mode at a *current* baudrate. Other communications parameters will still default to 8-N-1, *half-duplex mode*. For the escape sequence to work it must be previously enabled through the **Soft Entry (SE) setting**. Additionally, this setting provides two different escape sequences to choose from.

Notice, that while in the serial programming mode the serial port of the DS uses halfduplex mode of operation (suitable for RS485 communications). In this mode the RTS line provides direction control and the CTS line is unused. When the DS is waiting for the serial command to arrive the RTS line is HI*. When the DS outputs its reply to the serial command the RTS line is LOW* for as long as it takes to output this reply. Such behavior is intended to allow the RTS line to control the direction pin of RS485 interface ICs and RS232-to-RS485 converters.

Just because the DS is using the half-duplex operation in the serial programming mode doesn't mean that programming through RS232 or RS422 is not supported. If the actual hardware port on the DS is RS232 (RS422) then TX and RX lines should be used to send commands and receive replies while the RTS line should simply be ignored (i.e. RTS/CTS flow control must be disabled on the serial device connected to the DS). This was the rationale for choosing the half-duplex mode: it does not interfere with programming through RS232 or RS422 while making the DS also ready for programming via RS485.

#### All serial commands and replies use the following format:

STX Command/reply CR

**STX** (ASCII code 2) and **CR** (ASCII code 13) characters provide necessary encapsulation. All data before the STX and after the CR is ignored. **Command/reply** field contents has been explained in <u>programming</u>.

**Example:** here is a sample exchange between a serial device and the DS. Special characters are represented as follows: STX-  $\odot$ , CR-  $\checkmark$ .

Serial device-->DS: DS-->Serial device: ©GIP∜ ©A192.168.100.40∛

* HI and LOW states are described with respect to the serial ports of DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV. For EM100, EM120, EM200, EM202 the signaling is exactly opposite.

# Network programming

Unlike <u>serial programming</u> that requires the serial port of the DS to be in the serial programming mode, in which the serial port cannot exchange data with the network host, network programming can continue concurrently with the data routing between the network host and attached serial device. Therefore, network programming is not a "mode" of the Ethernet port.

#### There are three methods of network programming:

**Out-of-band UDP programming** is effected by sending programming commands as UDP datagrams to one of the two *UDP command ports*- either 65535 or 32767*. This programming method is called out-of-band programming since commands are sent outside of (separately from) the data connection. Programming through UDP command ports does not depend on any prior setup, always available and cannot be disabled.

**Inband TCP programming** is effected by sending programming commands within the TCP data connection itself, commands and replies are mixed right into the routing data stream (hence, the term "inband"). Inband programming is only possible when the **current Transport Protocol (TP)** [setting/parameter] is 1 (TCP) and **Inband (IB) setting** is 1 (enabled). Therefore, certain prior setup is needed for this programming method to work.

**Command-phase TCP programming** is also effected by sending programming commands within the data TCP connection. The difference with the inband programming is that the routing data and commands are not intermixed. Instead, the TCP connection itself is divided into two phases: *command-phase* in which programming can be performed (hence, the name of this programming method) and the *data phase* in which the data is routed. Command-phase TCP programming is only possible when the **current Transport Protocol (TP)** [setting/parameter] is 1 (TCP) and the **Data Login (DL) setting** is 1 (enabled). Therefore, certain prior setup is needed for this programming method to work.

"Telnet" TCP programming (supported by firmware V3.50 and above) is effected by establishing a TCP connection to the "telnet" port (port 23) of the DS. Such connection can be established regardless of whether current Transport Protocol (TP) [setting/parameter] is 0(UDP) or 1(TCP). Several TCP connections to port 23 can be established at the same time but only one of them will be at "logged in" state at any given time. With this new functionality, port 23 cannot be used as the data port of the DS.

* Existence of two identical command ports is historical. Originally, only one UDP port 65535 was allocated for programming. Later it was discovered that some routers can only forward traffic to port numbers 0-32767. Consequently, another command port at 32767 was introduced.

# Out-of-band (UDP) programming

With out-of-band UDP programming commands and replies are sent as UDP datagrams, one command or reply per datagram. As explained in <u>network programming</u> the DS accepts commands on two UDP ports- 65535 and 32767. Reply to a particular command is always sent to the IP-address and the port number from which this command was received.

Because each command and reply is sent in a separate UDP datagram no additional encapsulation (i.e. using STX and CR characters as in <u>serial command/replies</u>) is necessary.

**Example:** here is a sample exchange between the network host and the DS. Each line represents the data in a separate UDP datagram.

Host-->DS: SBR4 DS-->Host: A

One additional feature supported by the DS is the ability to receive and process *multiple* out-of-band commands. The network host can send up to eight such commands and the DS will receive and process them all one-by-one. This dramatically increases the speed with which the DS programming can be performed

over the network.

Since delivery of UDP packets is not guaranteed and packets can also arrive out-oforder the DS supports an optional command ID field. This field can be up to four ASCII characters long and contain any characters in the 0-9 and A-z range. ID field is added in the end of the command itself, '|' character (ASCII code 166) is used as a separator. When the DS receives a command that contains the ID field it issues the reply with the same ID field at the end. By sending commands with changing command ID the network host can match commands and replies.

**Example:** here is a sample exchange of two commands and replies between the network host and the DS. Each line represents the data in a separate UDP datagram. Replies arrive out of order but owing to the ID field the network host can still match each reply to its respective command.

Host-->DS: SBR4|1923 Host-->DS: SPR0|1924 DS-->Host: A|1924 DS-->Host: A|1923

Once again, the ID field is added at the end of all command data, which includes all command fields (mandatory or optional) described for individual commands. For example, **<u>Parameter (P) command</u>** can have an optional password field so command ID is added past this field (when it is present):

Host-->DS: PBR4/123pwd|1925

In the above example the password is "123pwd".

# Broadcast out-of-band (UDP) programming

Several DS commands are intended to be sent as broadcast UDP datagrams (column 'B' in the command table at <u>commands, messages, and replies</u> details which commands are accepted in broadcast packets). For example, the **Echo (X) command**, when sent as UDP broadcast, makes all locally attached DS send back a reply. This way it is possible to "auto-discover" all Device Servers on the local network segment and also receive their current status.

All other commands, not marked with a '+' in the 'B' column are supposed to address specific DS. When sent in the broadcast mode they are ignored by all Device Servers except the one that has been pre-selected using the **Select In Broadcast Mode (W) command**. This method provides a way to program the DS with invalid IP-address (address, that is incompatible with the network) when it is not possible to communicate with this DS in a "normal" way (i.e. by sending UDP datagrams to its IP-address). Once a certain DS has been pre-selected commands such as **Set Setting (S)** sent in the broadcast mode are accepted and processed by this DS as if they were regular non-broadcast datagrams.

# Inband (TCP) programming

Inband commands and replies are sent within the TCP data connection itself and can be mixed with the data being routed between the network host and attached serial device. As explained in <u>network programming</u> this method only works when the **current Transport Protocol (TP)** [setting/parameter] is 1 (TCP) and the **Inband (IB) setting** is 1 (enabled).

Since inband commands and replies are intermixed with the data a special escape character called Inband Escape Character (IEC) is needed to mark the beginning of

the command (reply) in the data stream. IEC code is 255. When the **Inband (IB) setting** is 1 (enabled) and the DS receives a character with code 255 followed by any character *other than* 255, the DS considers this to be a beginning of the inband command. If the network host wants to send a *data character* with code 255 it needs to send *two consecutive characters* with code 255. This will be interpreted by the DS as a *single* data character with code 255. Therefore, it is the responsibility of the network host to parse through the data it is sending to the DS and "double" all data characters with code 255.

When sending a reply back to the network host, the DS will also prefix this reply with the IEC. When sending a data byte with code 255 the DS will automatically double this character. It is the responsibility of the network host to parse through the data it receives from the DS and replace all double characters with code 255 with a single one.

#### All inband commands and replies use the following format:

IEC STX Command/reply

**IEC** character followed by **STX** (ASCII code 2) mark the beginning of command (reply). **CR** (ASCII code 13) marks the end of command (reply). All characters before the IEC/STX and after the CR are considered to be a "regular" routing data. **Command/reply** field contents has been explained in <u>programming</u>.

CR

**Example:** here is a sample exchange between the network host and the DS. Shown below is the data passed within a data TCP connection. Special characters are represented as follows: IEC-  $\blacklozenge$ , STX- O, CR-  $\measuredangle$ .

#### Host-->DS: ABC♦♦DEF♦©GIP∛GHIK DS-->Host: LMN♦©A192.168.100.40∛XYZ

In the above exchange the network host is sending the following data string: "ABC  $\diamond$  DEFGHIK". There is a single character with code 255 ( $\diamond$ ) but the DS has to double this character. Command inserted into this data stream is "GIP" (<u>Get Setting (G) command</u>, setting to be read is <u>IP-address (IP)</u>). Command is preceded with IEC ( $\diamond$ )followed by STX (O) and ended by CR ( $\not{\forall}$ ).

The DS sends the following data string to the network host: "LMNXYZ". At some point, when the reply to the command is ready, the DS inserts this reply into the data stream. Reply contains current IP-address of the DS.

Unlike <u>out-of-band UDP programming</u>, inband programming does not support multiple commands. It is not possible to send several commands and receive several replies back. The network host should only send the next command after having received a reply to the previous command.

# Command-phase (TCP) programming

Another method of programming is called *command-phase* programming. As explained in <u>network programming</u> it only works when the **current Transport Protocol (TP) [setting/parameter]** is 1 (TCP) and the **Data Login (DL) setting** is 1 (enabled). In this mode, the TCP data connection between the network host and the DS is split into two phases: *command phase* and *data phase*.

When the **Data Login (DL) setting** is 1 (enabled) and the data TCP connection is established the DS enters the command phase. In this phase the DS interprets all data sent by the network host as programming commands. Because no routing data can be transmitted in this phase an escape character (like the one used in the inband programming) is not needed.

#### All command-phase commands and replies use the following format:

STX Command/reply CR

Thus, command-phase commands and replies have the same format as those used in <u>serial programming</u>. **STX** (ASCII code 2) and **CR** (ASCII code 13) characters provide necessary encapsulation. All data before the STX and after the CR is ignored. **Command/reply** field contents has been explained in <u>programming</u>.

To switch the data connection from the command phase into the data phase the network host has to issue the **Logout (O) command**. After this command is sent* and accepted the DS switches into the data phase. From this moment on and until the TCP connection is terminated the network host can exchange the data with the attached serial device in the normal way.

**Logout (O) command** is only accepted after the network host logs in using **Login (L) command**, and this requires a valid password (if set in the **Password (PW) setting**). Therefore, setting **Data Login (DL)** to 1 (enabled) also enables network host authentication for data exchange with the attached serial device(hence, the name of this setting).

**Example:** here is a sample exchange that switches the DS into the data phase. Shown below is the data passed within a data TCP connection. Special characters are represented as follows: STX- ☺, CR- ♂. Login password is "123pwd"

---TCP connection established, command phase---Host-->DS: ©L123pwd ở 'network host logs in DS-->Host: ©A ở 'OK Host-->DS: ©O ở 'exit into the data phase (no reply) ---data phase from this point and until the TCP connection is closed---

Note: command-phase programming should not be confused with <u>inband programming</u>. The first one is enabled by the **Data Login (DL) setting**, the second one- by the **Inband (IB) setting**. Both can be enabled at the same time! After the DS exits into the data phase inband commands can still be sent (this time, with proper escape character), provided that inband programming is enabled.

*Command-phase inband programming is the only programming method in which no reply is returned upon successful completion of the <u>Logout (O) command</u>. The DS simply switches into the data phase.

# Telnet TCP programming [V3.50 and above]

"Telnet" TCP programming is the new programming method that is **supported by firmware V3.50 or higher**. Telnet programming is called so because it is effected through a TCP connection to port 23 of the DS (This is a standard telnet port). Such connection can be established regardless of whether **current Transport Protocol (TP)** [setting/parameter] is 0(UDP) or 1(TCP).

Several TCP connections to port 23 can be established at the same time but only one of them will be at "logged in" state at any given time i.e. have a programming session in progress (see <u>authentication</u> and <u>programming priorities</u>).

Because port 23 is now allocated for telnet programming which cannot be disabled you cannot set the **Port Number (PN)** to 23 when using TCP/IP transport protocol. This is because the DS will interpret any TCP connection to port 23 as a programming, not data connection. Older firmware (below V3.50) that did not support telnet programming does not impose this limitation for port 23 so the port can be used for data connections.

#### All telnet commands and replies use the following format:

Thus, telnet commands and replies have the same format as those used in <u>serial programming</u>. **STX** (ASCII code 2) and **CR** (ASCII code 13) characters provide necessary encapsulation. All data before the STX and after the CR is ignored. **Command/reply** field contents has been explained in <u>programming</u>.

# Authentication

Certain commands, when sent through the network, require authentication. To authenticate itself the network host must provide a password, that matches the one defined by the **Password (PW) setting**.

From the authentication standpoint, all commands can be divided into three groups:

**Commands that do not require authentication.** These commands can be sent at any time and by any network host.

**Commands with immediate authentication.** In these commands the password is supplied in the command body itself and authenticates this particular command. For some of these commands authentication is optional.

**Commands that require prior login.** These commands are only accepted after the network host has logged in using the **Login (L) command**. Login is performed once and is said to open a *programming session*.

The DS memorizes the source IP-address from which the **Login (L) command** is sent as well as the mode in which it is sent: <u>out-of-band</u>, <u>inband</u>, etc. Programming session must continue from the same IP-address and using the same way of command delivery. So, if the session was opened using out-of-band **Login (L) command** and the network host sends inband

**<u>Set Setting (S) command</u>** (this command requires prior login) then this command is not considered to be a part of the opened programming session and is rejected.

Programming sessions are ended either by switching the DS off or using **Logout (O)** or **Reboot (E)** commands. There is also a two-minute programming session timeout: if no command (that requires prior login) is issued for two minutes the session is ended automatically. Inband, command-phase, and telnet-mode programming sessions are also closed when their TCP connection is closed.

The DS makes sure that only one programming session is opened at any given timesee <u>programming priorities</u> for details.

Command table at <u>commands</u>, <u>messages</u>, <u>and replies</u> details which commands require authentication (see 'L' and 'I' columns).

Sending **Login (L) command** to open a programming session is required even when the DS is running in the <u>error mode</u> but sending login password in this case is not necessary.

# **Programming priorities**

The DS has five programming methods: <u>serial</u>, <u>out-of-band UDP</u>, <u>inband TCP</u>, <u>command-phase TCP</u>, and <u>telnet programming</u>. For the subject discussed below inband and command-phase programming are the same since they both take place within a data TCP connection. Therefore, four programming methods will be

©2000-2004 Tibbo Technology Inc.

discussed: serial, out-of-band, inband/command-phase, and telnet.

Since all four programming methods can be used at the same time the DS maintains priority mechanism to avoid conflicts that might arise if attached serial device and the network host(s) attempted to program the DS at the same time.

Serial programming has the highest priority of all- any command sent to the DS via the serial interface (in the serial programming mode) is always accepted and processed*, regardless of whether any form of network programming is (has been) taking place at the time.

As explained in <u>authentication</u>, all network commands can be divided into those that do not require any authentication, commands that require immediate authentication, and commands that require prior login using <u>Login (L) command</u> (commands that need a *programming session* to be opened).

Network commands that do not require authentication can be sent at any time, using any method. For example, network **<u>Echo (X) command</u>** will be accepted and processed even when the DS is in the serial programming mode.

Network Commands that require immediate authentication can be sent at any time and using any method, as long as the DS is not in the serial programming mode. When the DS is in the serial programming mode these commands are rejected (**R reply code**).

# For network commands that require prior login the following hierarchy of priorities is applied:

- Serial programming (highest priority)
- Out-of-band programming session
- <u>Telnet programming session</u>
- Inband or command-phase programming session (lowest priority)

#### The above should be understood as follows:

- Programming session using lower-priority programming method cannot start while higher-priority programming session is in progress. For example, programming session using out-of-band commands cannot start while the DS is in the serial programming mode. Programming session using TCP connection to telnet port cannot start while out-of-band session is in progress.
- Higher-priority programming can start at any time, even when lower-priority programming session was already in progress. In this case lower-priority programming session is aborted immediately. Thus, if out-of-band programming session was already opened and the DS enters a serial programming mode then out-of-band programming session is aborted.
- Programming session that is already opened cannot be interrupted by the same priority level programming session. The DS allows several simultaneous TCP connections to telnet port 23. Only one of these connections, however, can carry a programming session at any given time. Attempt to login through another TCP connection to port 23 will be rejected for as long as the earlier session remains opened.

* As long as this command is allowed to be sent through the serial port at all. Command table at <u>commands, messages, and replies</u> details which commands can be issued through the serial port (see 'S' column).

# Error mode, 4

The value of each DS setting (stored in the EEPROM) is protected by its own checksum. Every time the DS stores new setting value into the EEPROM it recalculates the checksum and saves it into the EEPROM along with the new setting data. Every time the DS reads out the value of a certain setting it verifies this setting's checksum. If the checksum error is detected (for any setting) the DS enters an *error mode*.

Status LEDs of the DS are playing an *error mode pattern* when the DS is in the error mode (unless the serial port of the DS is in the <u>serial programming mode</u>. Click <u>here</u> to see all available patterns).

Once entered, the error mode cannot be exited other then by rebooting the DSeither by power-cycling it or executing the **<u>Reboot (E) command</u>**.

Unlike firmware V2.5x, new firmware V3.1x allows the DS to be accessible over the network even in the error mode, and this provides a way to remotely "repair" the DS.

#### DS operation in the error mode is characterized by the following:

- <u>Status LEDs</u> of the DS are displaying an error mode pattern (unless the DS is in the <u>serial programming mode</u>);
- Error status (e flag) returned by the Echo (X) command is set to 'E';
- For every invalid setting the DS takes the default value* of this setting (which is fixed and does not depend on the EEPROM data) and assumes this default value as a run-time parameter. For example, if the <u>DHCP (DH) setting</u> is found to be invalid the DS will boot up with DHCP off because the default value of the <u>DHCP (DH) setting</u> is 0 (disabled);
- For two setting- **<u>Routing Mode (RM) setting</u>** and **<u>Password (PW) setting</u>** the DS uses their default values in any case, even if these settings are *valid*. This means that:
  - The DS will be in the slave routing mode (default value of the <u>Routing Mode (RM) setting</u>);
  - Password authentication will be disabled (default value of the **Password (PW) setting** is <NULL>). Consequently:
    - No password is to be supplied in the <u>Login (L) command</u>, although this command itself must still be executed before sending commands that require prior <u>authentication</u> (such as the <u>Initialize (I) command</u>);
    - Login password doesn't need to be supplied in commands that require <u>immediate authentication</u>, such as on-the-fly (network side) <u>Parameter (P) command</u>, even if the <u>On-the-fly Password (OP) setting</u> is 1 (enabled).

The above also applies to two most important settings that define DS visibility on the network- the **MAC-address (FE) setting** and the **IP-address (IP) setting**. When invalid, actual values of these settings are substituted with default ones, which are 0.1.2.3.4.5 and 192.168.100.40 respectively. This means that the DS will still be accessible through the network, but at default MAC and IP.

It is best to reinitialize the DS as soon as it is found to be in the error mode. This can be done through the **Initialize (I) command** or by using <u>quick initialization</u>.

* Default values can be changed through custom profile

# **Quick initialization**

Quick initialization is a way to completely reinitialize the DS without using any commands. This feature is handy when the DS is running in the <u>error mode</u> and needs to be repaired.

Quick initialization provides the same result as the *serial* **Initialize (I) command**. See individual setting description for the information on how each settings will behave during the initialization (some settings will be initialized unconditionally and some- only when found to be invalid).

### To quick-initialize the DS:

- Make sure the DS is powered;
- Press and release the Setup button* to enter the <u>serial programming mode</u>. Status LEDs will play the <u>serial programming mode pattern</u>;
- Wait for at least three seconds;
- Press and hold the Setup button for at least three seconds- both status LEDs will be switched off and this will indicate that the initialization has been started;
- Initialization takes about one second to complete. Initialization result will be shown by the status LEDs- green LED will be switched on for about 2 seconds indicating successful initialization. (If the red LED is switched on this means that the DS is malfunctioning).
- Switch the DS off and back on again to exit the error mode if necessary.
- * For EM100, EM120, EM200, EM202 pull the MD line low

# **Custom profiles**

Default setting values (i.e. values that settings assume after they are initialized through the **Initialize (I) command** or by using <u>quick initialization</u>) can be changed by adding a *custom profile* to the firmware file loaded into the DS.

Request more information on the subject via email.

# Reference

# Reference contains all necessary information on:

- **DS commands, messages and replies**. Commands are used to control the DS and can be issued through the network or through the serial port. The DS replies to the commands- reply codes indicate the result of command execution. Messages are different in that they are not replied to. For more information see programming.
- **DS settings**. Settings are *permanent functioning parameters* that are stored in the non-volatile memory (EEPROM) of the DS. Once programmed, they remain intact even when the DS is powered off. Many (but not all) settings require the DS to be rebooted for the new setting value to take effect.
- **DS parameters and instructions**. Parameters are *temporary overrides* for settings. Parameters are not saved into the EEPROM and take immediate effect (no rebooting required). **Instructions** are used to make the DS perform a certain action.

89

# Commands, messages, and replies

This section contains a reference for all DS commands and messages.

Commands are used to control the DS and can be issued through the network or through the serial port. The DS replies to the commands- reply codes indicate the result of command execution. Messages are different in that they are not replied to. For more information see programming.

Command and message description format can be found here.

#### Table below lists all available commands and messages:

C.C.	Ν	В	L	Ι	S	Description
L	+					Login command
0	+		+		+	Logout command
E	+		+		+	Reboot command
Ι	+		+		+	Initialize command
S	+		+		+	Set Setting command
G	+		+		+	Get Setting command
Р	+			(+)	+	Parameter command
X	+	+			+	Echo command
U	+	+			+	Status command
В	+					Buzz command
R	+					Reset Overflow Flags command
Α	+	+		+		Assign IP-address command
W	+	+				Select In Broadcast Mode command
V	+	+			+	Get Firmware Version command
N	+		+			Jump To NetLoader command
J	+					Notification message

#### Notes:

- C.C.- command codes;
- N- '+' in this column indicates that command can be issued through the network;
- B- '+' in this column indicates that command can be issued in the broadcast mode (when sent through the network) without the need to pre-select a particular DS using <u>Select In Broadcast Mode (W) command</u> first;
- L- '+' in this column indicates that command, when issued through the network, requires prior login using the Login (L) command;
- I- '+' in this column indicates that command, when issued through the network, requires <u>immediate authentication</u>. '(+)' indicates that immediate authentication is optional;
- S- '+' in this column indicates that command can be issued through the serial port.

Listed below are all available reply codes:

90

R.C.	Description
Α	<b>OK</b> (command completed successfully)
С	Error (incorrect command was issued)
R	Rejected (command was rejected by the DS)
D	Denied (access was denied by the DS)
F	Failed (command execution failed)

#### Notes:

• R.C.- reply code.

# Command & message description format

All commands in this section are described using the following format:	
Function:	Command function in brief
Can be issued through:	Describes whether command can be issued through the network and/or serial port, or both; also lists additional conditions- whether or not prior login is required for network command, etc.
Command format:	Shows command syntax
Possible replies:	Lists all possible reply status codes that can be returned in response to this command
Compatibility with 2.5x:	Describes whether this command is new, upward- compatible, or fully compatible with the firmware V2.5x
See also:	Additional relevant links

# **Details**

Additional information about the command.

# Login (L) command

Description (see command description format info here)	
Function:	Authenticates the network host and opens the network programming session
Can be issued through:	Network (broadcasts ignored*)
Command format:	<b>Lppp</b> , where <b>ppp</b> is the login password, 0-8 characters long
Possible replies:	A, R, D
Compatibility with 2.5x:	Fully compatible
See also:	Authentication, Programming priorities, Error mode

# **Details**

**Login command** is used to <u>authenticate</u> the network host, which is a necessary step to perform before attempting to execute certain commands over the network (such as <u>Set Setting (S)</u>. Check the "L" column of the command table at

<u>commands</u>, <u>messages</u>, <u>and replies</u> to find out which commands require prior authentication.

Login password to supply in the **Login command** body is defined by the **Password (PW) setting**. Note, that to execute commands that require prior login you need to use the **Login command** even when the password is not set (i.e. it is <NULL>).

**OK (A) reply code** is returned if login is accepted by the DS. **Rejected (R) reply code** is returned if the DS is in the serial programming mode or a higher-priority programming session is already in progress (see <u>programming priorities</u> for details). **Denied (D) reply code** is returned if incorrect password is supplied.

**Login command** is said to open a programming session. For more information on programming sessions see <u>authentication</u>.

The DS memorizes the IP-address of the network host from which the **Login command** is sent. If subsequent commands (that require login) are sent from a different IP-address then these commands are replied to with the **Denied (D) reply code**.

Login password is not verified when the DS is running in the <u>error mode</u>. Login command should still be used as usual but it is not necessary to supply any password, leaving the *pp...p* field blank in this situation is OK.

* Without prior selection using <u>Select In Broadcast Mode (W) command</u>.

# Logout (O) command

<b>Description</b> (see command description format info here)	
Function:	<u>Network command:</u> logs out the network host (ends the programming session); <u>serial command:</u> ends the serial programming mode
Can be issued through:	Network (broadcasts ignored*, login required); serial port
Command format:	0
Possible replies:	A, D
Compatibility with 2.5x:	Newly implemented command
See also:	<u>Authentication</u> , <u>Out-of-band (UDP) commands</u> , <u>Inband (TCP) commands</u> , <u>Command-</u> phase (TCP) commands, <u>Serial programming</u>

#### **Details**

**Logout command** performs a different action depending on whether it was issued through the network or through the serial port.

When the **Logout command** is issued through the network it closes the <u>programming session</u> that was opened using the **Login (L) command**. **Denied (D) reply code** is returned if the programming session is not in progress or if it doesn't belong to the sender of the **Logout command**- the DS remembers the IP-address of the network host that opens the programming session and requires that all subsequent commands (that require prior login) are sent from the same IP.

**OK (A) status code** is returned if command is accepted, but only if this command was sent as an <u>out-of-band (UDP)</u> or <u>inband (TCP)</u> command. No reply is sent in case of <u>command-phase (TCP)</u> command, the DS simply switches into the data

phase (Denied (D) reply code is still returned).

When the **Logout command** is issued through the serial port it makes the DS exit the <u>serial programming mode</u> (and into the data routing mode). Since no authentication is required for DS programming through the serial port the only possible reply code in this case is **OK (A)**.

Executing **Logout command** does not make the DS reboot. If it is necessary to reboot the DS (i.e. to make it reread updated setting values) the **Reboot (E) command** should be used instead.

* Without prior selection using <u>Select In Broadcast Mode (W) command</u>.

# Reboot (E) command

<b>Description</b> (see command description format info here)	
Function:	Causes the DS to reboot
Can be issued through:	Network (broadcasts ignored*, login required); serial port
Command format:	E
Possible replies:	D
Compatibility with 2.5x:	Fully compatible
See also:	Authentication

#### **Details**

Reboot command causes the DS to reset (restart).

When issued through the network, this command requires prior login using the **Login (L) command** (programming session must be opened). **Denied (D) reply code** is returned if the programming session is not in progress or if it doesn't belong to the sender of the **Reboot command**- the DS remembers the IP-address of the network host that opens the programming session and requires that all subsequent commands (that require prior login) are sent from the same IP.

No reply code is returned if command is accepted- the DS simply reboots. This makes the DS "lose" any data connection that might be in progress so the network host must discard such a connection if it was established before.

**Reboot command** can be used to exit the serial programming mode or end the network programming session. This may be necessary, for instance, to make the DS reread new setting values that were programmed prior to the reboot. If it is necessary to end the programming without rebooting the DS the **Logout (O) command** should be used instead.

* Without prior selection using <u>Select In Broadcast Mode (W) command</u>.

# Initialize (I) command

Description (see command description format info here)		
Function:	Initializes the settings of the DS	
Can be issued through:	Network (broadcasts ignored*, login required); serial port	
Command format:	I	

#### Possible replies:

A, D, F

Compatibility with 2.5x:

See also:

Fully compatible **Authentication** 

#### **Details**

**Initialize command** restores the settings of the DS to their default factory values**. Some settings are initialized each time this command is executed. Other settings are initialized or left intact depending on the interface (network or serial) through which the **Initialize command** was issued and also on whether or not a particular setting contained a valid or invalid value.

All settings can be divided into three groups:

- Settings that are initialized unconditionally, no matter whether the **Initialize command** is issued through the network or through the serial port. For example, the **Routing Mode (RM) setting** is always reset to 0 (server) after the initialization.
- Settings that are initialized unconditionally for the serial **Initialize command**, but are only initialized in case they contained an invalid value (or found to be corrupted)*** for the network **Initialize command**. One of such settings is the **IP-address (IP)**. Since resetting the IP-address might possibly make the DS inaccessible through the network the risk is minimized by leaving the setting intact unless it is "bad".
- Settings that are only initialized when they contained an invalid value, no matter whether command was issued through the network or through the serial port. For example, the <u>MAC-address (FE) setting</u> is never altered unless found to be invalid. This is because the MAC-address is preset during the production and should not be altered unless absolutely necessary.

When issued through the network, the **Initialize command** requires prior login using the **Login (L) command** (programming session must be opened). **Denied (D) reply code** is returned if the programming session is not in progress or if it doesn't belong to the sender of the **Initialize command**- the DS remembers the IP-address of the network host that opens the programming session and requires that all subsequent commands (that require prior login) are sent from the same IP.

**Failed (F) reply code** is returned if the DS fails to reset one or more settings. This usually indicates a hardware malfunction (EEPROM failure).

- * Without prior selection using Select In Broadcast Mode (W) command.
- ** Or the values defined by the <u>Custom profile</u> created by the User.
- *** Each setting's data is protected by an individual checksum.

# Set Setting (S) command

Description (see command description format info here)Function:Sets (writes) new setting valueCan be issued through:Network (broadcasts ignored*, login required); serial portCommand format:Sssvv...v, where ss: setting mnemonic, vv...v: new setting valuePossible replies:A, D, C, F

#### Compatibility with 2.5x:

Fully compatible

See also:

Get Setting (G) command, Settings

# **Details**

**Set Setting command** assigns new values to the selected setting. *ss* is the setting mnemonic, i.e. "IP" for the **IP-address (IP) setting**.

Example: to set IP-address to 192.168.100.40 issue the following command**:

-->DS: SIP192.168.100.40 DS-->: A

When issued through the network, this command requires prior login using the **Login (L) command** (programming session must be opened). **Denied (D) reply code** is returned if the programming session is not in progress or if it doesn't belong to the sender of the **Set Setting command**- the DS remembers the IP-address of the network host that opens the programming session and requires that all subsequent commands (that require prior login) are sent from the same IP.

**Error (C) reply code** is returned if the setting mnemonic and/or supplied setting value is/are invalid. **Failed (F) reply code** is returned if the DS fails to write new setting value. This usually indicates a hardware malfunction (EEPROM failure).

* Without prior selection using Select In Broadcast Mode (W) command.

** Encapsulation characters such as IEC, STX, CR are not shown.

# Get Setting (G) command

**Description** (see command description format info here)

Function:	Gets (reads) new setting value
Can be issued through:	Network (broadcasts ignored*, login required); serial port
Command format:	<b>Sss</b> , where <b>ss</b> is the setting name
Possible replies:	Avvv, D, C, F, where vvv is current setting value
Compatibility with 2.5x:	Fully compatible
See also:	Settings

#### **Details**

**Get Setting command** reads out current value of the selected setting. *ss* is the setting mnemonic, i.e. "IP" for the **IP-address (IP) setting**.

Example: to read current IP-address issue the following command**:

-->DS: GIP

#### DS-->: A192.168.100.40

When issued through the network, this command requires prior login using the **Login (L) command** (programming session must be opened). **Denied (D) reply code** is returned if the programming session is not in progress or if it doesn't belong to the sender of the **Get Setting command**- the DS remembers the IP-address of the network host that opens the programming session and requires that all subsequent commands (that require prior login) are sent from the same IP.

**Error (C) reply code** is returned if the setting mnemonic is invalid. **Failed (F) reply code** is returned if the DS fails to read out the setting value, setting value is not valid, or if the data is found to be corrupted***. This *may* indicate a hardware malfunction (EEPROM failure).

Invalid setting can be repaired using the <u>Set Setting (S) command</u> or (recommended) using the <u>Initialize (I) command</u> or <u>quick initialization</u> (this will initialize all other invalid settings).

* Without prior selection using <u>Select In Broadcast Mode (W) command</u>.

** Encapsulation characters such as IEC, STX, CR are not shown.

*** Each setting's data is protected by an individual checksum.

# Parameter (P) command

**Description** (see command description format info here)

Function:	Sends parameter or instruction to the DS
Can be issued through:	Network (broadcasts ignored*, login not required, immediate authentication for this command can be enabled); serial port
Command format:	<b>P<relevant data=""></relevant></b> (see description of individual parameters and instructions for details)
Possible replies:	A, C, D, R
Compatibility with 2.5x:	Upward-compatible
See also:	Parameters and instructions, Authentication

#### **Details**

**Command code 'P' (Parameter)** serves as a "common entry point" for sending a variety of <u>parameters and instructions</u>.

Network **Parameter command** can be made to require immediate authentication. To enable this feature:

- <u>On-the-Fly Password (OP) setting</u> must be programmed to 1 (enabled);
- <u>Password (PW) setting</u> must contain a password (i.e. a string of non-zero length).

When two above conditions are met each network **Parameter command** sent to the DS must contain a password, which is to be added at the end of the command after a slash character.

<u>Example:</u> below is the parameter command that changes the baudrate. The password is "123pwd"**:

-->DS: PBR4/123pwd DS-->: A

If no password or incorrect password is supplied when the password is expected the **Denied (D) reply code** is returned.

**Parameter command** is upward-compatible with the one, implemented in the firmware V2.5x meaning that some new parameters and instructions has been added.

* Without prior selection using <u>Select In Broadcast Mode (W) command</u>.

** Encapsulation characters such as IEC, STX, CR, and the command ID field are not shown.

# Echo(X) command

Description (see command description format info here)		
Function:	Returns DS status information	
Can be issued through:	Network (broadcasts OK, login not required); serial port	
Command format:	x	
Possible replies	<pre>(network): Annn.nnn.nnn.nnn.nnn/ppp pp/mseic/ES/ooo/ddd, where nnn.nnn.nnn.nnn.nnn.mn- MAC-address of the DS; ppppp- data port number of the DS; m- fixed to 'N' (means that the application firmware, not the NetLoader is running); s- programming mode: '*' (none), 'S' (serial), 'U' (out-of-band UDP), 'T' (inband TCP or command- phase TCP); e- error status: '*' (no errors detected), 'E' (running in the error mode); i- IP-address status: '*' (not obtained yet), 'I' (obtained via DHCP), 'M' (fixed, set manually); c- data connection status: '*' (closed), 'A' (sending ARP), 'O' (being established), 'C' (TCP connection established or being closed), 'U' (UDP connection established), 'R' (reset by remote host); E- Ethernet-to-serial buffer overflow: '*' (no overflow), 'E' (overflow detected); S- serial-to-Ethernet buffer overflow: '*' (no overflow), 'S' (overflow detected); OO- owner name;</pre>	
Possible replies (serial):	<ul> <li><i>ddd</i>- <u>device name</u>.</li> <li><i>Amseips/ES</i> (see field description above); there is a difference in the <i>e</i> flag: additionally, it displays 'N' (Ethernet port failure)</li> </ul>	
Compatibility with 2.5x:	Upward-compatible	
See also:	Network programming, Serial programming	

#### **Details**

The primary use of the *network* **Echo command** is to auto-discover Device Servers on the network: when the network host sends this command in the broadcast mode, it collects the replies from all locally attached Device Servers (hence, the name of the command). Reply from each DS contains all necessary information (MAC-address, etc.) that is needed to continue communicating with each specific DS in a non-broadcast mode.

Information returned by the Echo command contains the following data:

- MAC-address is the most important field that can be used to uniquely identify each DS*! Besides, the MAC-address is used (and, therefore, must be known in advance) as a reference to the particular DS in such commands as <u>Assign IP-</u> address (A) and <u>Select in Broadcast Mode (W)</u>.
- Data port number field is read directly from the <u>Port Number (PN) setting</u> of the DS.
- Follow are several one-character flag fields that tell the network host about the present status of the DS:
  - *m* flag always returns 'N'. This is meant to indicate that the DS is running (this) application firmware. In contrast, when the <u>NetLoader</u> is running this flag shows 'L' (NetLoader also supports Echo command);
  - s flag shows whether or not any form of programming is in progress. 'S' is returned when the serial port of the DS is in the <u>serial programming mode</u>. If the <u>network programming session</u> is in progress the 'U' is returned for <u>out-of-</u> <u>band (UDP) programming</u> session and 'T' is returned for <u>inband (TCP)</u> or <u>command-phase (TCP)</u> programming sessions;
  - e flag indicates whether or not the DS is running in the <u>error mode</u>. Additionally, for serial Echo command this flag can be set to 'N' indicating hardware failure of the Ethernet port;
  - *iflag* reflects current IP-address status. It is useful when the DHCP is enabled (see the <u>DHCP (DH) setting</u>). The flag is set to '*' while the DS is trying to obtain the IP-address from the DHCP server. When this is done the flag is set to 'I'. When the DHCP is off this flag returns 'M' (for "manual");
  - cflag reflects the connection state;
  - *E* and *S* flags display <u>routing buffer</u> overflows. Both flags are reset automatically when the data connection is closed or aborted. The flags can also be reset manually through the **Reset Overflow Flags (R) command**.
- oo...o and dd...d fields return the data from the <u>Owner Name (ON)</u> and <u>Device Name (DN)</u> settings. Using meaningful names simplifies identification of a particular DS.

Example: supposing X command returns the following reply**:

# -->DS: X DS-->: A0.150.30.213.55.74/1001/NS*IC/*S/BigCorp/Device1

This means that the MAC-address of this DS is 0.150.30.213.55.74, data connections are accepted on port 1001, the DS is in the serial programming mode, operates normally, IP-address was successfully obtained via the DHCP, TCP connection is established, the serial-to-Ethernet buffer overrun has been detected (within current data connection). The owner name and device name of this DS is "BigCorp" and "Device1" respectively.

When issued through the serial port, the **Echo command** returns the same information minus the MAC-address, data port number, owner name, and device name fields. This is because these fields are only needed to discover and identify the DS on the network and are not required on the serial side. The primary application of the serial **Echo command** is for the attached serial device to inquire current data connection and routing status of the DS. This may be used by the serial device, in conjunction with the <u>modem commands</u> (serial-side parameters and instructions) to control and monitor data connection establishment and termination by the DS.

There is also a **<u>Status (U) command</u>** that returns additional information about the status of the DS.

**Echo command** is upward compatible with the one implemented in firmware V2.5x. New fields in the reply has been added past the fields that were already present in the old firmware version.

* This is because each DS, like any other Ethernet device, has a unique MACaddress preset during the production.

** Encapsulation characters such as IEC, STX, CR, and the command ID field are not shown

# Status (U) command

Function:	Returns additional DS status information
Can be issued through:	Network (broadcasts OK, login not required); serial port
Command format:	U
Possible replies	<pre>(network): Addd.ddd.ddd.ddd/ppppp/eee/ ttt/ccc/sss/fff///sdfpb/RCTS, where ddd.ddd.ddd.ddd- IP-address of the network hos with which the data connection is (was/ to be) established; ppppp- data port number on the network host with which the data connection is (was/ to be) established; eee- total number of characters in the Ethernet- to-serial buffer; ttt- capacity of the Ethernet-to-serial buffer; ccc- number of committed characters in the serial- to-Ethernet buffer; sss- total number of characters in the serial-to- Ethernet buffer; fff- capacity of the serial-to-Ethernet buffer; r- current baudrate (same numbering is used as in the Baudrate (BR) setting); s- serial port state: '*' (closed), 'O' (opened); d- serial port mode: 'F' (full-duplex), 'H' (half- duplex); f- flow control: '*' (disabled), 'R' (RTS/CTS flow control); p- parity: '*' (none), 'E' (even), 'O' (odd), 'M' (mark), 'S' (space); b- bits per byte: '7' (7 bits), '8' (8 bits); R- current state of the RTS (output) line: '*' (LOW*), 'R' (HIGH*); C- current state of the CTS (input) line: '*' (LOW*), 'C' (HIGH*); F- current state of the DTR (output) line: '*' (LOW*), 'T' (HIGH*); S- current state of the DTR (input) line: '*' (LOW*), 'T' (HIGH*); S- current state of the DSR (input) line: '*'</pre>

See also:	Network programming, Serial programming, Data routing, Serial-to-Ethernet data routing
Compatibility with 2.5x:	Newly implemented command
Possible <u>replies</u> (serial):	Addd.ddd.ddd/ppppp (see field description above)
	(LOW*), 'S' (HIGH*).

_....

#### **Details**

**Status command** returns additional information about the status of the DS. In conjunction with the **Echo (X) command** it can be used to obtain extensive information about the state of the DS.

The following data is returned:

- **ddd.ddd.ddd** and **ppppp fields**. IP-address and port number of the network host with which the data connection is (was/ to be) established. IP-address in this field shows the following:
  - After the power-up the fields returns the IP-address and port defined by the <u>Destination IP-address (DI) setting</u> and <u>Destination Port Number (DP) setting</u>;
  - If these default values are overridden by the <u>Destination IP-</u> <u>address (DI) parameter</u>, <u>Destination Port Number (DP) parameter</u>, or <u>Establish Connection (CE) instruction</u>, then the fields show new overriding values;
  - While the data connection is established and after it is closed (aborted) the fields show the IP-address and port of the network host with which this connection is (was) established. Notice that this may be different from the above- if the DS has accepted an incoming connection.
- **eee** and **ttt fields** show the total number of data bytes in the <u>Ethernet-to-</u> <u>serial buffer</u> and the capacity of this buffer. Capacity information is included because the buffer size is different for different models of the DS.
- ccc, sss, and fff fields show the number of <u>committed</u> bytes in the <u>serial-to-</u> <u>Ethernet buffer</u>, total number of bytes in this buffer, and the buffer capacity. Again, buffer capacity is included because it differs depending on the DS model.
- *r*, *d*, *f*, *p*, and *b* flags show current serial port setup. This information is useful because <u>on-the-fly commands</u> (network-side parameters and instructions) can change serial port communications parameters at any time.
- *d* flag reflects whether the serial port is in the half-duplex or full-duplex mode. This data may be of interest when the <u>Serial Interface (SI) setting</u> is 2 (auto) and you need to verify what mode the DS has assumed at startup.
- *R*, *C*, *T*, and *Sflags* reflect current status of the RTS, CTS, DTR, and DSR lines of the serial port. This information may be useful in debugging communications problems between the DS and the attached serial device.

Example: supposing U command returns the following reply**:

#### -->DS: U DS-->: A192.168.100.90/37150/0/510/0/3/510/5/OFR*8/R*TS

This means that the data connection is (was/ to be) established with the network host at 192.168.100.90, port number 37150. No data is currently in the Ethernet-to-serial buffer, buffer capacity is 510 bytes. No committed data is in the serial-to-Ethernet buffer, there are 3 bytes of (uncommitted) data there, and the total

capacity is 510 bytes. The baudrate is 38400, serial port is opened, uses full-duplex mode. RTS/CTS flow control is enabled, parity is set to none, data is 8 bits/byte. RTS, DTR, and DSR lines are in the HIGH* state, CTS line is LOW*.

When issued through the serial port, the **Status command** returns only two fields: *ddd.ddd.ddd* and *ppppp*. The primary use of the serial **Status command** is to let the attached serial device inquire the IP-address and the port number of the network host with which the connection is (was/ to be) established. This may be used by the serial device, in conjunction with the <u>modem commands</u> (serial-side parameters and instructions) to control and monitor data connection establishment and termination by the DS.

* HI and LOW states are described with respect to the serial ports of DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV. For EM100, EM120, EM200, EM202 the signaling is exactly opposite.

** Encapsulation characters such as IEC, STX, CR, and the command ID field are not shown.

# Buzz (B) command

**Description** (see command description format info here)

Function:	Makes the status LEDs of the DS play a recognizable pattern
Can be issued through:	Network (broadcasts ignored*, login not required)
Command format:	В
Possible replies:	Α
Compatibility with 2.5x:	Newly implemented command
See also:	Status LED signals

#### <u>Details</u>

**Buzz command**, when received by the DS, makes the device "play" a recognizable fast-blinking pattern on its <u>status LEDs</u>. This can be used to match an IP-address to a physical DS.

* Without prior selection using <u>Select In Broadcast Mode (W) command</u>.

# Reset Overflow Flags (R) command

Description (see command description format info here)		
Function:	Resets routing buffer overflow flags	
Can be issued through:	Network (broadcasts ignored*, login not required)	
Command format:	R	
Possible replies:	Α	
Compatibility with 2.5x:	Newly implemented command	
See also:	Status LED signals, Routing buffers	

#### Details

Reset Overflow Flags command clears routing buffer overflow flags. Buffer overflow condition is returned by the **Echo (X) command** (flags **E** and **S**) and also displayed by the status LEDs of the DS. Overflow flags are cleared automatically when the data connection to the network host is closed or aborted or can also be reset manually using the **Reset Overflow Flags command**.

* Without prior selection using Select In Broadcast Mode (W) command.

# Assign IP-address (A) command

Description (see command description format info here)		
Function:	Assigns new IP-address to the DS which is referenced by its MAC-address	
Can be issued through:	Network (broadcasts OK, login not required)	
Command		
	format: Ammm.mmm.mmm.mmm.mmm m/ppp/iii.iii.iii, where mmm.mmm.mmm.mmm.mmm- MAC- address of the target DS; ppp- password (defined by the Password (PW) setting); iii.iii.iii.iii- new IP-address to be assigned to the DS	
Possible replies:	A, D, C, F	
Compatibility with 2.5x:	Fully compatible	
See also:	<u>Authentication</u> , <u>Broadcast out-of-</u> <u>band commands</u>	

#### **Details**

Assign IP-address command is used to set the new IP-address of a certain DS over the network. Command should be sent in the broadcast mode, the target DS is referenced by its MAC-address (supplied in the command body). All locally attached devices receive the broadcast but only the DS with matching MAC-address reacts to it.

Assign IP-address is a command of immediate authentication type which means that the password (defined by the **Password (PW) setting**) is supplied in the

command body itself.

<u>Example:</u> if the MAC-address of the target DS is 0.150.30.213.55.74, the password is "pass1" and the new IP-address is to be 192.168.100.41 then the following command should be sent:

#### -->DS: A0.150.30.213.55.74/pass1/192.168.100.41 DS-->: A

<u>Note:</u> password field in this command should be present even if the **Password (PW) setting** is empty (<NULL>):

#### -->DS: A0.150.30.213.55.74//192.168.100.41

New IP-address is saved into the **IP-address (IP) setting**, just as if the **Set Setting (S) command** (i.e. "**SIP***iii.iii.iii*") was executed. Differences with the **Set Setting (S) command** are in that the DS starts using the new IP-address immediately (no rebooting required) and that the target DS is referenced by its MAC-address.

**Rejected (R) reply code** is returned if the <u>serial programming mode</u> is in progress. **Denied (D) reply code** is returned if the password is incorrect. **Error (C) reply code** is returned if command structure is incorrect (a field or field separator is missing) or if the field data is wrong. **Failed (F) reply code** is returned when the DS failed to write new IP-address into the EEPROM. This usually indicates a hardware malfunction (EEPROM failure). Since this is a broadcast command no reply is returned if no DS on the network has the MAC-address specified in the command.

When the **Assign IP-address command** is issued while the DS has a data connection in progress this data connection is aborted. No packet (even RST in case of TCP data connection) is sent to the network host that was communicating with the DS.

# Select In Broadcast Mode (W) command

**Description** (see command description format info here)

Function:	Selects the DS as the target in $\underline{broadcast}$ out-of-band UDP programming
Can be issued through:	Network (broadcasts OK, login not required)
Command format:	<b>Ammm.mmm.mmm.mmm.mmm</b> , where <b>mmm.mmm.mmm.mmm.mmm</b> - MAC-address of the target DS
Possible replies:	Α
Compatibility with 2.5x:	Newly implemented command
See also:	Broadcast out-of-band commands

#### **Details**

**Select In Broadcast Mode command** is used to pre-select a certain DS for subsequent programming via <u>broadcast out-of-band (UDP)</u> commands. Only a small portion of DS commands (such as <u>Echo (X)</u>) are accepted when sent in broadcast UDP datagrams. All other commands are only accepted if they address a specific DS. Such specific addressing normally involves sending UDP datagrams with the IP-address of the targeted DS as the destination (i.e. non-broadcast datagrams). This requires the IP-address of the DS to be configured reachable which is not always possible or convenient.

**Select In Broadcast Mode command** provides a way around this. Target DS, referenced by its MAC-address, is first pre-selected using this command. After that, all broadcast commands that are normally ignored when sent as broadcasts, are not ignored and processed by this pre-selected DS.

When **Select In Broadcast Mode command** is issued all devices whose MACaddresses do not match the target MAC-address supplied in the command body deselect themselves. This means that to switch onto programming of another DS in the broadcast mode, you need to send the new **Select In Broadcast Mode command** with the new target MAC-address. This will pre-select a different DS while at the same time de-selecting the DS that was selected before. To de-select all DS on the network send **Select In Broadcast Mode command** with no MACaddress field.

This command only influences which DS responds when it is addressed using broadcast UDP commands. Command has no influence over any other form of programming that involves addressing the DS by its IP-address.

The only possible reply to this command is **OK (A)**. It is issued by the DS that has recognised its MAC-address in the command body. If no DS on the local network recognizes its MAC then there will be no reply received to this command.

# Get Firmware Version (V) command

**Description** (see command description format info here)

Function:	Returns firmware version of this firmware
Can be issued through:	Network (broadcasts OK, login not required); serial port
Command format:	V
Possible replies:	<b>Avvv</b> , where <b>vvv</b> is the version string
Compatibility with 2.5x:	Fully compatible
See also:	

#### **Details**

Get Firmware Version command returns current firmware version string.

The version string is always encapsulated in '<' and '>', begins with the version number in Vx.xx format, and possibly contains a small comment after a space.

Example:

-->DS: V DS-->: A<V3.20 R3 final>

## Jump To Netloader (N) command

Description (see command description format info here)	
Function:	Jumps to (launches) the <u>NetLoader</u>
Can be issued through:	Network (broadcasts ignored*, login required)
Command format:	Ν

# Possible replies: A, D, F Compatibility with 2.5x: Newly implemented command See also: NetLoader

# **Details**

**Jump To NetLoader command** verifies <u>NetLoader</u> presence and integrity, then launches it. NetLoader integrity is verified by calculating the checksum on its code and comparing this checksum with the stored one. The NetLoader is not launched if the checksum is found to be invalid.

This command requires prior login using the <u>Login (L) command</u> (<u>programming session</u> must be opened). **Denied (D) reply code** is returned if the programming session is not in progress or if it doesn't belong to the sender of the **Jump To NetLoader command**- the DS remembers the IP-address of the network host that opens the programming session and requires that all subsequent commands (that require prior login) are sent from the same IP.

Failed (F) reply code is returned if the NetLoader is found to be corrupted.

* Without prior selection using Select In Broadcast Mode (W) command.

# Notification (J) message

<b>Description</b> (see command description format info here)		
Function:	Reports I/O pin status change	
Send through:	Network	
Format:	<b>Jsss</b> , where <b>sss</b> is the byte value in the 0-255 range containing the status of all I/O lines of the DS	
Compatibility with 2.5x:	Newly implemented feature	
See also:	Serial port and serial communications	

#### **Details**

**Notification message** in not a command, it is a message that the DS sends to the network host when one of the monitored I/O lines of the DS changes its state (for longer than 0.5 seconds). The status of *all* lines is rolled into a single byte of data and sent out even when a *single* I/O line changes its state.

Which I/O lines are being monitored is defined by the **current Notification Bitmask** (NB) [<u>setting</u>/ <u>parameter</u>].

**Notification messages** are only generated when the data connection is in progress and are sent to the network host with which this data connection is established. **Notification Destination (ND) setting** defines which port on this network host notifications are sent to.

How notifications are sent (out-of-band, inband, etc.) is defined by several factors:

• If the <u>Data Login (DL) setting</u> is 1 (enabled), current Transport Protocol (TP) [setting/ parameter] is 1 (TCP), and the data TCP connection is in the <u>command phase</u> then notifications are sent via this TCP connection (IEC character is not used). Otherwise...

- If the <u>Inband (IB) setting</u> is 1 (enabled), and the current Transport Protocol (TP) is 1 (TCP) then notifications are sent inside this TCP connection as <u>inband</u> messages (IEC character is used). Otherwise...
- Notifications are sent as <u>out-of-band UDP</u> datagrams.

The value in each **Notification message** should be interpreted as a collection of binary bits, with each position corresponding to a certain I/O line of the DS. Bit positions are exactly the same as those of the **Notification Bitmask (NB) Setting**. Bit values correspond to the states of the I/O lines of Modules. Line states on the RS232 connectors of Serial Device Servers and Boards that incorporate RS232 transceivers are inverted relative to the states reported in the **notification message**.

Example: supposing, the following Notification message is sent*:

#### **J027**

Decimal 27 converts to binary 00011011. This means that:

- For devices such as <u>EM100</u>: P2/DSR and P5/RTS lines are LOW; P0, P1, P2/DSR, and P4/CTS lines are HIGH;
- For devices such as <u>DS100</u>: DSR and RTS lines are HIGH; DTR and CTS lines are LOW.

**Notification messages** are not commands so they do not require any reply from the receiving end.

If it is the DS that receives a **Notification message** from another DS, then the following happens:

- If current Flow Control (FC) [setting/ parameter] on the receiving DS is 0 (disabled) and current Serial Interface is full-duplex then this DS will set its RTS line according to the value of CTS bit (bit 4) supplied by the Notification message; otherwise the status of the RTS line will not be changed.
- If the **DTR Mode (DT) setting** on the receiving DS is 0 (idle) then this DS will set its DTR line according to the value of DSR bit (bit 2) supplied by the **Notification message**; otherwise the status of the DTR line will not be changed.

The above means that the **Notification message** links RTS-CTS and DTR-DSR signals on two communicating DS: when the CTS input on one end changes its status the RTS output on the other end changes its status accordingly (same with the DTR-DSR pair).

* Encapsulation characters such as IEC, STX, CR are not shown.

# Settings 2.5.2

This section contains a reference for all DS settings.

Settings are *permanent functioning parameters* that are stored in the non-volatile memory (EEPROM) of the DS. Once programmed, they remain intact even when the DS is powered off.

Setting description format can be found here.

#### All settings can be divided into three groups:

- <u>Network settings</u>. These settings define how the DS operates on the network. For more information see <u>Ethernet port and network communications</u>.
- <u>Serial settings</u>. These settings define the operation of the DS serial port. For more information see <u>serial port and serial communications</u>.

105

• **Encapsulation settings**. These settings define what incoming serial data is recorded into the serial-to-Ethernet routing buffer and when and how this data is combined into the network packets and sent to the network host. For more information see <u>serial-to-Ethernet data routing</u>.

# **Setting description format**

All settings in this section are described using the following format:	
Function:	Setting function in brief
Set (S) command format:	Syntax of the corresponding <b>Set (S) command</b> that is used to set new setting value
<u>Get (G) command</u> format:	Syntax of the corresponding <b>Get (S) command</b> that is used to read out current value of the setting
Init (I) command effect:	Explains under what additional conditions the setting is initialized when the <b>Initialize (I)</b> command is issued or quick initialization is launched. Some settings are always initialized, some are initialized only when invalid, etc.
Post-initialization value:	Shows factory initialization value that will be assigned to the setting after the initialization (factory initialization values may be overridden by the custom profile)
Change takes effect:	Explains when the new setting value takes effect. Changes to some settings have immediate effect, for some settings rebooting is required, etc.
Overriding parameter:	Certain settings have corresponding overriding parameters that can be supplied through the <b>Parameter (P) command</b>
<b>Relevance conditions:</b>	Some settings are relevant to the operation of the DS only when other settings have certain values
Compatibility with 2.5x:	Describes whether this setting is new, upward- compatible, or fully compatible with the firmware V2.5x
See also:	Additional relevant links

# **Details**

Additional information about the setting.

# **Network settings**

**Network settings** define how the DS operates on the network. For more information see <u>Ethernet port and network communications</u>.

The following settings belong to this group:

Setting	Description
Owner Name (ON) setting	Defines the owner name identificator for the DS
Device Name (DN) setting	Defines the device name identificator for the DS
MAC-address (FE) setting	Defines MAC-address of the DS
DHCP (DH) setting	Enables/disables DHCP for the DS
IP-address (IP) setting	Defines the IP-address of the DS
Port Number (PN) setting	Defines the data port number of the DS
Transport Protocol (TP) setting	Defines whether UDP or TCP protocol will be used for data connections
Broadcast UDP (BU) setting	Defines whether DS will accept or reject broadcast UDP datagrams
Inband Command (IB) setting	Defines whether inband command passing is enabled or disabled
Data Login (DL) setting	Enables or disables command-phase TCP programming
Connection Timeout (CT) setting	Defines connection timeout (in minutes)
Routing Mode (RM) setting	Defines whether incoming and/or outgoing data connections are allowed
Connection Mode (CM) setting	Defines conditions under which the DS will attempt to establish an outgoing connection to the remote host
Destination IP-address (DI) setting	Defines the IP-address of the destination network host to which the DS will attempt to connect to (by default)
<b>Destination Port Number (DP) setting</b>	Defines the port on the destination network host to which the DS will attempt to connect to (by default)
Gateway IP-address (GI) setting	Defines the IP-address of the default gateway
Netmask (NM) setting	Defines the IP-address range for the local subnet
Notification Destination (ND) setting	Defines which UDP port the DS will send I/O line status change notifications to
Password (PW) setting	Defines the authentication password for the network host

# **Owner Name (ON) setting**

Description (see setting description format info here)	
Function:	Defines the owner name identificator for the DS
<u>Set (S) command</u> format:	<b>SON</b> ooo, where ooo is the name string, 0-8 characters long
Get (G) command format:	GON
Init (I) command effect:	Only initialized if invalid, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	<null></null>
Change takes effect:	Immediately
Overriding parameter:	

Relevance conditions:	
Compatibility with 2.5x:	Newly implemented setting
See also:	

### **Details**

This setting, together with the **Device Name (DN) setting** forms a name identificator for the DS. Owner name and device name are returned by the **Echo (X) command**.

**Owner Name** is also used to form device name supplied to the <u>DHCP server</u>.

# Device Name (DN) setting

**Description** (see setting description format info here)

Function:	Defines the device name identificator for the DS
<u>Set (S) command</u> format:	<b>SDN</b> <i>dd</i> , where <i>ddd</i> is the name string, 0-8 characters long
Get (G) command format:	GDN
Init (I) command effect:	Only initialized if invalid, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	<null></null>
Change takes effect:	Immediately
<b>Overriding parameter:</b>	
Relevance conditions:	
Compatibility with 2.5x:	Newly implemented setting
See also:	

### **Details**

This setting, together with **Owner Name (ON) setting** forms a string identificator for the DS. Owner name and Device name are returned by the **Echo (X) command**.

Device Name is also used to form device name supplied to the DHCP server.

# **MAC-address (FE) setting**

Description (see setting description format info here)	
Function:	Defines MAC-address of the DS
<u>Set (S) command</u> format:	<b>SFExxx.xxx.xxx.xxx.xxx</b> , where <b>xxx.xxx.xxx</b> is the MAC-address in the dot-decimal notation (i.e. 0.2.3.4.120.240)
Get (G) command format:	GFE
Init (I) command effect:	Only initialized if invalid, through network command, serial command, or <u>quick initialization</u>

#### **Tibbo Document System**

See also:	Ethernet port and network communications
Compatibility with 2.5x:	Fully compatible
Relevance conditions:	
Overriding parameter:	
Change takes effect:	After reboot
Post-initialization value:	0.1.2.3.4.5

#### **Details**

Each DS is shipped from the factory with unique **MAC-address** already assigned to it. **DO NOT** change this address unless you have a good reason to do so. If you do change the address remember that the first digit of the address must be even!

Since the **MAC-address** of each DS is unique it may be used for device identification. It is returned by the <u>Echo (X) command</u> and also used to address a particular DS in the <u>Assign IP-address (A) command</u> and <u>Select in Broadcast Mode (W) command</u>.

This setting's mnemonic- "FE"- has to do with the previous name of the setting-"Factory Ethernet Address". Mnemonic was preserved to ensure compatibility with previous firmware versions.

# DHCP (DH) setting

Description (see setting description format info here) **Function:** Enables/disables DHCP for the DS Set (S) command format: **SDH***x*, where *x*: 0 (disabled), 1 (enabled) Get (G) command format: GDH Init (I) command effect: Initialized unconditionally, through network command, serial command, or guick initialization Post-initialization value: 0 (disabled) Change takes effect: After reboot **Overriding parameter:** ___ **Relevance conditions: Compatibility with 2.5x:** Newly implemented setting See also: DHCP

### **Details**

This setting defines whether the DS will use a fixed IP-address, defined by the <u>IP-address (IP) setting</u> or will obtain its IP-address from the DHCP server at startup. DHCP server must be present on the network for this to work. The DS will not start normal operation until it receives the IP-address.

IP-address obtained from the DHCP server is saved into the <u>IP-</u> <u>address (IP) setting</u> thus overwriting the previous setting value that might have been set manually.

IP-address status (obtained/ not obtained) of the DS is returned by the

Echo (X) command and also displayed by status LEDs of the DS.

In addition to the IP-address configuration, the DHCP server is *usually* configured to provide default Gateway IP-address and netmask. If this is the case, then **<u>Gateway IP-address (GI)</u>** and **<u>Netmask (NM)</u>** settings will also be overwritten by the data from the DHCP server.

# IP-address (IP) setting

Description (see setting description format info here)	
Function:	Defines the IP-address of the DS
<u>Set (S) command</u> format:	<b>SIP</b> <i>xxx.xxx.xxx</i> , where <i>xxx.xxx.xxx.xxx</i> is the IP-address in dot-decimal notation (i.e. 192.168.100.40)
Get (G) command format:	GIP
Init (I) command effect:	Initialized unconditionally through serial command or <u>quick initialization</u> , initialized only if invalid through network command
Post-initialization value:	127.0.0.1
Change takes effect:	After reboot
Overriding condition:	
Relevance conditions:	DHCP (DH) setting=0 (disabled)
Compatibility with 2.5x:	Fully compatible
See also:	Ethernet port and network communications

### **Details**

**IP-address** must be compatible with the network on which the DS is installed. Many networks have DHCP server, in this case it is better to make the DS obtain the **IP-address** automatically on startup (this is enabled by programming the **DHCP (DH) setting** to 1 (enabled)).

When DHCP is activated the **IP-address** obtained from the DHCP server is saved into the **IP-address setting** thus overwriting older value that might have been set before.

Some **IP-addresses** are not valid in principle. Many devices and operating systems (including Windows) automatically discard network packets that refer to such incorrect IPs. The DS will allow such an **IP-address** to be saved into the EEPROM but will assume a modified address on startup:

Invalid IP-address	IP-address that the DS will actually use
x.x.x.0	x.x.x.1
x.x.x.255	x.x.x.1
>223.x.x.x	223.x.x.x

Example: if the **IP-address** is 224.168.100.255 then the DS will actually use 223.168.100.1. The EEPROM data will not be modified and **GIP** command will still return original data (224.168.100.255) but the actual **IP-address** used by the DS will be corrected according to the above rules.

# Port Number (PN) setting

Description (see setting description format info here)	
Function:	Defines the data port number of the DS
<u>Set (S) command</u> format:	<b>SPN</b> <i>pppp</i> , where <i>ppppp</i> is the port number in the 0-65534 range. Also, port 32767 cannot be used when <b>current Transport Protocol</b> ( <b>TP)</b> [ <u>setting/parameter</u> ] is 0(UDP). Additionally, for firmware 3.5x and above, port 23 cannot be used when current Transport Protocol is 1(TCP)
Get (G) command format:	GPN
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	1001
Change takes effect:	After reboot
Overriding parameter:	
Relevance conditions:	
Compatibility with 2.5x:	Fully compatible
See also:	Ethernet port and network communications, Network programming

### <u>Details</u>

This setting defines the *Data Port* on which the DS is accepting incoming data connections.

For UDP communications, outgoing UDP datagrams are also sent from this port. For TCP communications the DS accepts incoming data connections on the data port but establishes outgoing connections from a pool of ephemeral ports in the 10000-10255 range (port number is incremented with each new connection).

Port 65535 is excluded from the allowable range because port 65535 is a programming port of the DS- command UDP datagrams are sent to this port. Technically, this only affects UDP communications, TCP connections should still be able to use this port but the port 65535 was not allowed to be selected as the data port from the early versions of DS firmware so this restriction is now preserved for "historical" reasons.

Since programming UDP datagrams can now also be sent to port 32767, this port cannot be used for UDP data communications when **current Transport Protocol (TP)[<u>setting/parameter</u>]** is 0 (UDP). The DS will allow the **Port Number** to be programmed to 32767 but all data sent to this port in the UDP mode will be interpreted as programming commands. Using port 32767 for TCP communications won't cause any problems.

New <u>telnet programming</u> method introduced in firmware V3.5x uses telnet port 23 for DS programming as well. Any connection established to port 23 of the DS is interpreted by the DS as a programming connection. Therefore, this port cannot be used for data connections when the **current Transport Protocol (TP)** is 1(TCP). Older firmware does not use port 23 for programming so this restriction does not apply.

# **Transport Protocol (TP) setting**

Description (see setting description format info here)	
Function:	Defines whether UDP or TCP protocol is used for data connections
Set (S) command format:	<b>STP</b> <i>x</i> , where <i>x</i> : 0 (UDP), 1 (TCP)
Get (G) command format:	GTP
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	0 (UDP)
Change takes effect:	After reboot
Overriding parameter:	Transport Protocol (TP) Parameter
<b>Relevance conditions:</b>	
Compatibility with 2.5x:	Fully compatible
See also:	Ethernet port and network communications

# **Details**

**Transport Protocol** defines which communications protocol- TCP/IP or UDP/IP will be used by the DS for exchanging data with the network host.

Some aspects of UDP and TCP implementation in the DS are different from standard or commonly used implementation. See <u>UDP data "connections"</u> and <u>TCP data connections</u> for more info on the subject.

# Broadcast UDP (BU) setting

**Description** (see setting description format info here)

Function:	Defines whether DS will accept or reject broadcast UDP datagrams
Set (S) command format:	SBUx, where x: 0 (disabled), 1 (enabled)
Get (G) command format:	GBU
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	0 (disabled)
Change takes effect:	After reboot
Overriding parameter:	
Relevance conditions:	Current Transport Protocol (TP) [ <u>setting</u> / <u>parameter]</u> = 0 (UDP)
Compatibility with 2.5x:	Newly implemented setting
See also:	Broadcast UDP communications

# **Details**

When **Broadcast UDP** is 1 (enabled), the DS will accept and route the data received in broadcast UDP datagrams, as if these packets were addressed directly to this DS.

#### 113 Tibbo Document System

Broadcast packets must still be addressed to the correct **<u>Port Number (PN)</u>**. DS will ignore broadcast UDP packets when **Broadcast UDP** is 0 (disabled).

This setting only allows/disallows the reception of broadcast UDP packets and has no influence over whether the DS can send out its own broadcast UDP datagrams or not. The DS can be made to send the broadcast packets by setting **current Destination IP-address (IP)** [setting/parameter/instruction] to 255.255.255.

This Setting is irrelevant when **current Transport Protocol (TP)** [setting/ parameter] is 1 (TCP) because TCP protocol cannot use broadcast packets to carry data.

# Inband Commands (IB) setting

Description (see setting description format info here)	
Function:	Enables or disables inband (TCP) programming
Set (S) command format:	SIBx, where x: 0 (disabled), 1 (enabled)
Get (G) command format:	GIB
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	0 (disabled)
Change takes effect:	After reboot
<b>Overriding parameter:</b>	
Relevance conditions:	Current Transport Protocol (TP) [ <u>setting</u> / parameter]=1 (TCP)
Compatibility with 2.5x:	Newly implemented setting
See also:	Inband (TCP) commands

### <u>Details</u>

**Inband Commands** defines whether <u>inband (TCP) programming</u> is enabled or disabled.

This Setting is irrelevant when the **current Transport Protocol (TP)** [setting/ parameter] is 0 (UDP) because inband command passing is only possible when TCP/IP is used for data connections between the network host and the DS.

# Data Login (DL) setting

**Description** (see setting description format info here)

Function:	Enables or disables <u>command-</u> phase (TCP) programming
<u>Set (S) command</u> format:	<b>SDL</b> <i>x</i> , where <i>x</i> : 0 (disabled), 1 (enabled)
<u>Get (G) command</u> format:	GDL
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	0 (disabled)
Change takes effect:	After reboot

Overriding parameter:

Relevance	conditions:
-----------	-------------

Current Transport Protocol (TP) [setting/ parameter]=1 (TCP)

Compatibility with 2.5x: See also:

Command-phase (TCP) commands,

Inband (TCP) commands

Newly implemented Setting

### **Details**

 $\ensuremath{\textbf{Data Login}}$  defines whether  $\underline{\mbox{command-phase TCP programming}}$  is enabled or disabled.

- - -

This Setting is irrelevant when the **current Transport Protocol (TP)** [<u>setting</u>/ <u>**parameter**</u>] is 0 (UDP) because command-phase programming is only possible when TCP/IP is used for data connections between the network host and the DS.

# **Connection Timeout (CT) setting**

Description (see setting description format info here)		
Function:	Defines data connection timeout	
<u>Set (S) command</u> format:	<b>SCT<i>ttt</i></b> , where <i>ttt</i> is connection timeout, 0-99 minutes; 0 means connection never times out	
Get (G) command format:	GCT	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	5 (5 minutes)	
Change takes effect:	After reboot	
Overriding parameter:		
<b>Relevance conditions:</b>		
Compatibility with 2.5x:	Fully compatible	
See also:	Ethernet port and network communications	

### **Details**

**Connection Timeout** defines after how many minutes an idle connection is terminated. Setting **Connection Timeout** to 0 disables automatic timeouts. Setting **Connection Timeout** to any value in the 1-99 range enables automatic timeouts: when no packets are transferred across a connection in either direction for a corresponding number of minutes the connection is terminated. The DS terminates TCP connections by sending an RST packet, while UDP "connections" are simply discarded (the other party is not informed in any way).

**Connection Timeout** prevents an idle ("hanged") connection from occupying the DS indefinitely thus keeping other network hosts from communicating with the DS. Note, that idle connection is defined as the one across which no *packets* are transferred for a period of time (not the one across which no *data* is transferred for a period of time). This provides a way of maintaining the connection even in the absence of data (this is known as "keepalive"). For TCP connections remote host can send empty ACK packets, for UDP "connection" remote host can send UDP datagrams of zero length.

**Connection Timeout** is relevant even when the <u>Connection Mode (CM) setting</u> is 0 (immediately). In this case, when timeout comes the DS terminates an existing connection to the network host and immediately opens a new one. This can be used to "auto-repair" hanged connections in systems where permanent connection to the network host must be maintained indefinitely.

### Routing Mode (RM) setting

Description (see setting description format info here)		
Function:	Defines whether incoming and/or outgoing data connections are allowed	
<u>Set (S) command</u> format:	<b>SRM</b> <i>x</i> , where <i>x</i> : 0 (server), 1 (server/client), 2 (client)	
Get (G) command format:	GRM	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	0 (server)	
Change takes effect:	After reboot	
Overriding parameter:	Routing Mode (RM) parameter	
Relevance conditions:		
Compatibility with 2.5x:	Upward-compatible (with minor deviations)	
See also:	<u>Ethernet port and network communications,</u> <u>Error mode</u>	

### **Details**

**Routing Mode** defines whether the DS will accept incoming connections (passive opens) and/or establish outgoing connections (perform active opens):

0 (server) Only incoming connections are accepted, the DS never attempts to establish an outgoing connection to the network host. There is no restriction on which network host can connect to the DSconnection from any IP-address will be accepted as long as the remote host is connecting to the correct **Port Number (PN)** using current Transport Protocol (TP) [setting/ parameter]. Server routing mode is fully compatible with the slave routing mode of firmware V2.5x. 1 (server/client) Both incoming and outgoing connections are allowed*. Outgoing connections are established with current Destination IPaddress (DI) [setting/ parameter/ instruction] and current Destination Port (DP) [setting/ parameter/ instruction]. Exactly when the DS attempts to establish an outgoing connection is defined by the **Connection Mode (CM) setting**. Server/client mode is compatible with the master routing mode of firmware V2.5x with one exception: the DS now accepts incoming connections from any IP-address, not just the IPaddress matching the one defined by the **Destination IP**address (DI) setting as was in the firmware V2.5x.

2 (client) Only outgoing connections are allowed, the DS rejects all incoming connections. This is a newly implemented routing mode.

Current Routing Mode of the DS is changed to 0 (server) if the DS enters the error mode (the value of the Routing Mode setting itself remains intact).

* Since the DS only allows for a single data connection at any given time this should be understood as "whichever comes first".

# **Connection Mode (CM) setting**

Description (see setting description format info here)		
Function:	Defines conditions under which the DS will attempt to establish an outgoing connection to the remote host	
<u>Set (S) command</u> format:	<b>SCM</b> <i>x</i> , where <i>x</i> : 0 (immediately), 1 (on data or command), 2 (on command), 3 (on command or DSR=HI*)	
Get (G) command format:	GCM	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	1 (on data or command)	
Change takes effect:	After reboot	
Overriding parameter:		
Relevance conditions:	Current Routing Mode (RM) [ <u>setting</u> / parameter]= 1 (server/client) OR 2 (client)	
Compatibility with 2.5x:	Newly implemented setting	
See also:	<u>Ethernet port and network communications,</u> <u>Serial-to-Ethernet data routing</u> , <u>UDP data "connections"</u>	

#### Details

**Connection Mode** defines under which condition the DS attempts to establish an outgoing connection** to current Destination IP-address (DI) [setting/ parameter/ instruction] and current Destination Port Number (DP) [setting/ parameter/ instruction]:

0 (immediately)	The DS attempts to establish an outgoing connection right after the powerup***. The DS will also make this connection "persistent". If the connection is closed (aborted) by the network host the DS will (attempt to) establish it again. Connection timeout (defined by the <b>Connection Timeout (CT) setting</b> ) still works in this mode: when the current connection times out the DS aborts it and immediately establishes a new connection. Such behavior "auto-repairs" hanged connections.
1 (on data or command)	The DS attempts to establish an outgoing

connection when the first serial data is received into the serial port and <u>committed</u> OR when **Establish Connection (CE) instruction** is issued.

2 (on command) The DS attempts to establish an outgoing connection only when Establish Connection (CE) instruction is issued.

**3 (on command or DSR=HI)** The DS attempts to establish an outgoing connection only when <u>Establish Connection (CE) instruction</u> is issued OR when the DSR line of the serial port is brought HI* (for at least 20ms).

Existing connection can always be terminated by using the Close Connection (CC) instruction or Abort Connection (CA) instruction. With Connection Mode 3 (on command or DSR=HI*) it is also possible to close the connection by bringing the DSR line LOW*.

**Connection Mode** is irrelevant when the **current Routing Mode (RM)** is 0 (server) since in this mode outgoing connections are not allowed at all.

* HI and LOW states are described with respect to the serial ports of DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV. For EM100, EM120, EM200, EM202 the signaling is exactly opposite.

** Since the DS only allows for a single data connection at a time all conditions described here only apply to a situation when no data connection is established yet.

*** After the IP-address is obtained from the DHCP server if the **DHCP (DH) setting** is 1 (enabled).

# **Destination IP-address (DI) setting**

<b>Description</b> (see setting description format info <u>here</u> )	
Function:	Defines the IP-address of the destination network host to which the DS will attempt to connect to (by default)
Set (S) command format:	<b>SDI</b> <i>xxx.xxx.xxx</i> , where <i>xxx.xxx.xxx</i> is the IP-address of the destination in dot-decimal notation (i.e. 192.168.100.41)
Get (G) command format:	GDI
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	127.0.0.2
Change takes effect:	After reboot
Overriding param/instr:	Destination IP-address (DI) parameter, Establish Connection (CE) instruction
Relevance conditions:	Current Routing Mode (RM) [ <u>setting</u> / parameter]= 1 (server/client) or 2 (client)
Compatibility with 2.5x:	Fully compatible
See also:	Ethernet port and network communications

### **Details**

**Destination IP-address** defines the IP-address of the network host to which the DS will attempt to establish an outgoing connection. When the DS will attempt to establish a connection to the destination host is defined by the

**<u>Connection Mode (CM) setting</u>**. Destination port the DS will attempt to connect to is defined by the **current Destination Port Number (DP)** [<u>setting</u>/ parameter/ instruction].

**Destination IP-address** is irrelevant when the **current Routing Mode (RM)** [setting/parameter] is 0 (server) since in this mode outgoing connections are not allowed.

When **Destination IP-address** is set to 255.255.255.255 and **current Transport Protocol (TP) [setting/parameter]** is 0 (UDP) the DS sends out its own UDP datagrams as link-level broadcasts i.e. with destination MAC-address of UDP datagrams set to 255.255.255.255.255.255. Setting the destination IP to 255.255.255.255 for TCP/IP is invalid, since TCP doesn't support broadcasts in principle. For more information see <u>broadcast UDP communications</u>.

# **Destination Port Number (DP) setting**

**Description** (see Setting description format info here)

Function:	Defines the port on the destination network host to which the DS will attempt to connect to
<u>Set (S) command</u> format:	<b>SDP</b> <i>pppp</i> , where <i>pppp</i> is the port number of the destination in the 0-65535 range
Get (G) command format:	GDP
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>guick initialization</u>
Post-initialization value:	1001
Change takes effect:	After reboot
Overriding param/instr:	Destination Port Number (DP) Parameter, Establish Connection (CE) instruction
Relevance conditions:	Current Routing Mode (RM) [ <u>setting</u> / parameter]= 1 (server/client) or 2 (client)
Compatibility with 2.5x:	Fully compatible
See also:	Ethernet port and network communications

#### <u>Details</u>

**Destination Port Number** defines the port of the network host to which the DS will attempt to establish an outgoing connection. When the DS will attempt to establish a connection to the destination host is defined by the

<u>Connection Mode (CM) setting</u>. Destination IP-address the DS will attempt to connect to is defined by the current Destination IP-address (DI) [setting/parameter/instruction].

**Destination Port Number** is irrelevant when the **current Routing Mode (RM)** [setting/parameter] is 0 (server) since in this mode outgoing connections are not allowed.

# Gateway IP-address (GI) setting

Description (see Setting description format info here)		
Function:	Defines the IP-address of the default gateway	
<u>Set (S) command</u> format:	<b>SGI</b> <i>xxx.xxx.xxx</i> , where <i>xxx.xxx.xxx</i> is the IP-address of the default gateway in dot-decimal notation (i.e. 192.168.100.1)	
Get (G) command format:	GGI	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>guick initialization</u>	
Post-initialization value:	127.0.0.1	
Change takes effect:	After reboot	
Overriding condition:	<i>May</i> be automatically updated by the gateway IP- address provided by the DHCP server (in case <b>DHCP (DH) setting</b> is 1 (enabled))	
Relevance conditions:	Current Routing Mode (RM) [ <u>setting</u> / parameter]= 1 (server/client) or 2 (client)	
Compatibility with 2.5x:	Fully compatible	
See also:	Ethernet port and network communications	

#### **Details**

**Gateway IP-address** defines the IP-address of default gateway through which the DS will (attempt to) establish a connection to the destination network host at **current Destination IP-address (DI)** [<u>setting</u>/ <u>parameter</u>/ <u>instruction</u>] in case this host is not on the same subnet with the DS.

Whether or not the destination network host is on the local subnet is determined by comparing the <u>IP-address (IP) setting</u>, current Destination IP-address (DI), and the <u>Netmask (NM) setting</u> (see this setting's description for details).

**Gateway IP-address** is irrelevant when the **current Routing Mode (RM)** [<u>setting</u>/<u>parameter</u>] is 0 (server) since in this mode outgoing connections are not allowed.

When <u>DHCP</u> is activated (**DHCP (DH) setting** is 1(enabled)) the Gateway IP-address obtained from the DHCP server is saved into this setting thus overwriting older value that might have been set before. This only happens when the DHCP server is configured to provide gateway IP-address data.

# Netmask (NM) Setting

Description (see setting description format info here)		
Function:	Defines the IP-address range for the local subnet	
<u>Set (S) command</u> format:	<b>SGInnn</b> , where <b>nnn</b> is the netmask for the local subnet in dot-decimal notation (i.e. 255.255.255.0)	
<u>Get (G) command</u> format:	GNM	
<u>Get (G) command</u> format: <u>Init (I) command</u> effect:	<b>GNM</b> Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	

Change takes effect:	After reboot
Overriding condition:	May be automatically updated by the netmask provided by the DHCP server (in case <b>DHCP (DH) setting</b> is 1 (enabled))
<b>Relevance conditions:</b>	Current Routing Mode (RM) [ <u>setting</u> / <u>parameter]</u> = 1 (server/client) or 2 (client)
Compatibility with 2.5x:	Fully compatible
See also:	Ethernet port and network communications

### **Details**

Netmask defines the boundaries of a local subnet. When establishing an outgoing connection to the destination network host at current Destination IP-address (DI) [setting/ parameter/ instruction] the DS compares this address with the Netmask and its own IP-address (IP) to determine if the destination is on the local or foreign subnet. The DS will (attempt to) connect directly to the current Destination IP-address (DI) if the destination host is found to reside on the local subnet or to the Gateway IP-address (GI) if the destination is found to reside on a foreign subnet.

Comparison is done as follows:

- All four bytes of the **IP-address (IP)** are ANDed with four bytes of the **Netmask**.
- All four bytes of the current Destination IP-address (DI) are ANDed with four bytes of the Netmask.
- Results of previous two steps are compared: if they are equal then the destination is on the same subnet with the DS, if different- the destination is on the foreign subnet and the DS will be connecting through the gateway.

Example: supposing, the **IP-address (IP)** of the DS is 192.168.100.40 (C0.A8.64.28 in HEX representation), current Destination IP-address (DI) is 192.168.100.90 (C0.A8.64.5A in HEX) and the **Netmask** is 255.255.255.0 (FF.FF.FF.00 in HEX). Then:

- C0.A8.64.28 AND FF.FF.FF.00 will result in C0.A8.64.00
- C0.A8.64.5A AND FF.FF.FF.00 will result in C0.A8.64.00
- Resulting numbers are the same so the destination is on the same subnet

Here is another way of explaining how the Netmask works. When printed in binary representation, the Netmask always consists of a number of 1s on the left and the number of 0s on the right (for the example above the Netmask value is 111111. 1111111. 11111111. 00000000). Positions with 1s (left side) represent the part in which the **current Destination IP-address (DI)** must match the **IP-address (IP)** of the DS to be considered local. Positions with 0s (right side) represent the range of IP-addresses belonging to the same subnet. If the Netmask is 255.255.255.0 then any IP-address that starts with 255.255.255 will be on the same subnet.

**Netmask** is irrelevant when the **Current Routing Mode (RM)** [setting/ parameter] is 0 (server) since in this mode outgoing connections are not allowed.

When <u>DHCP</u> is activated (**DHCP (DH) setting** is 1(enabled)) the Gateway IP-address obtained from the DHCP server is saved into this setting thus overwriting older value that might have been set before. This only happens when the DHCP server is configured to provide netmask data.

# Notification Destination (ND) setting

Description (see setting description format info here)	
Function:	Defines which UDP port the DS will send I/O line status change notifications to
Set (S) command format:	<b>SND</b> <i>x</i> , where <i>x</i> : 0 (last known port), 1 (port 65535)
Get (G) command format:	GND
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	0 (last known port)
Change takes effect:	After reboot
Overriding parameter:	
Relevance conditions:	Notification Bitmask (NB) setting <>0 AND notifications are sent as <u>out-of-</u> <u>band UDP datagrams</u> (see <u>Notification Bitmask (NB) setting</u> for details)
Compatibility with 2.5x:	Newly implemented setting
See also:	Ethernet port and network communications, Serial port and serial communications

### <u>Details</u>

**Notification (J) messages** are generated when one of the monitored I/O lines of the DS changes its state. Which I/O lines are monitored for changes is defined by the **Notification Bitmask (NB) setting**. Notifications are only sent when the data connection is established and are sent to the network host with which this connection is established. **Notification Destination** defines which UDP port on the destination host notifications are sent to when notifications are being sent as UDP datagrams (<u>out-of-band</u>):

- **0 (last known port)** Notifications are sent to the UDP port from which the most recent programming UDP datagram was received. Therefore, notifications are sent after at least one such datagram is received (since the data connection is established). This option is useful when the DS has to send notifications to the PC. Port number from which PC applications are sending their programming UDP datagrams are usually ephemeral which means that they are always changing. Therefore, the DS will wait for the first programming UDP datagram to arrive.
- **1 (port 65535)** Notifications are always sent to the UDP port 65535. This option is useful when the DS is communicating with another DS. In this case the port to send notifications to is fixed and known so there is no need to wait for the programming UDP datagram to arrive.

**Notification Destination** is irrelevant when the <u>Notification Bitmask (NB)</u> is set to is 0 because this means that no I/O lines of the DS are monitored for changes (so there will be no notifications to generate). **Notification Destination** is also irrelevant when notifications are being sent inside the data TCP connection itself (see **Notification (J) message** for more information on when this happens).

# Password (PW) setting

Description (see setting description format info here)	
Function:	Defines the authentication password for the network host
<u>Set (S) command</u> format:	<b>SPW</b> <i>ppp</i> , where <i>ppp</i> : is the password string, 0-8 characters long
Get (G) command format:	GPW
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	<null></null>
Change takes effect:	Immediately
Overriding parameter:	
Relevance conditions:	
Compatibility with 2.5x:	Fully compatible
See also:	Authentication

# **Details**

Certain network commands require <u>authentication</u>. To authenticate itself the network host must provide a password that matches the one defined by the **Password setting**.

# **Serial settings**

**Serial settings** define the operation of the DS serial port. For more information see <u>serial port and serial communications</u>.

The following settings belong to this group:

### 123 Tibbo Document System

Setting	Description
Serial Interface (SI) setting	Selects full-duplex or half-duplex mode for the serial port of the DS
Flow Control (FC) setting	Enables or disables hardware (RTS/CTS) flow control for the serial port of the DS
DTR Mode (DT) setting	Defines the function of the DTR line of the serial port of the DS
Baudrate (BR) setting	Defines the baudrate of the serial port of the DS
Parity (PR) setting	Defines the parity mode of the serial port of the DS
Bits Per Byte (BB) setting	Defines the bits/byte mode of the serial port of the DS
Soft Entry (SE) setting	Disables or enabled serial programming mode entry through escape sequence and selects escape sequence type
On-the-fly Commands (RC) setting	Enables or disables on-the-fly command processing by the DS
On-the-fly Password (OP) setting	Enables or disables password protection for on-the-fly commands
Notification Bitmask (NB) setting	Defines which I/O lines of the DS are monitored for changes

# Serial Interface (SI) setting

Description (see setting description format info here)		
Function:	Selects full-duplex or half-duplex mode for the serial port of the DS (when in the <u>data routing mode</u> )	
<u>Set (S) command</u> format:	<b>SSI</b> <i>x</i> , where <i>x</i> : 0 (full-duplex), 1 (half-duplex), 2 (auto)	
Get (G) command format:	GSI	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	2 (auto)	
Change takes effect:	After reboot or exiting the serial programming mode	
<b>Overriding parameter:</b>		
Relevance conditions:		
Compatibility with 2.5x:	Fully compatible	
See also:	Serial port and serial communications	

# **Details**

Serial port of the DS can operate in full-duplex or half-duplex mode. "Full-duplex" and "half-duplex" here refers exclusively to the logical operation of the DS, not to the hardware implementation of the serial port, which depends on the DS model.

Full-duplex operation

Suitable for RS232 and RS422 communications. RTS (output) and CTS (input) lines are used in a "normal" way i.e. for flow control between the DS and attached serial device (when **current Flow Control (FC)** [setting/

	<b>parameter]</b> = 1 (enabled)), or signaling between the network host and attached serial device (through Set I/O Pin Status (Sx) instructions, Get I/O Pin Status (Gx) instructions, and Notification (J) messages).
Half-duplex operation	Suitable for RS485 communications. In this mode the RTS line provides direction control and the CTS line is unused. When the Ethernet-to-serial buffer of the DS is empty (nothing to send out through the serial port) the RTS line is HI*. When there is some data to send out the RTS line is LOW* for as long as the data is being output. Such behavior is intended to allow the RTS line to control the direction pin of the RS485 interface ICs and RS232-to- RS485 converters.
Auto	In this mode the DS selects the full-duplex or half-duplex mode automatically, at startup, depending on whether the CTS/SEL line is physically connected to the ER/WS line. These two lines are found on EM100, EM120, EM200, EM202. If there is a wire (short-circuit connection) between the CTS/SEL and ER/WS then the DS selects the half-duplex mode. If no short-circuit between these two line is detected (at startup) the DS selects full-duplex mode. <i>DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV</i> carry necessary interface-selection circuitry inside them. Leave the <b>Serial Interface</b> at 2 (auto) to let the device select correct serial interface automatically.

The setting only influences the operation of the serial port in the <u>data routing mode</u>. When the serial port is in the serial programming mode it is always using the halfduplex interface- see <u>serial programming</u> for details.

* HI and LOW states are described with respect to the serial ports of DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV. For EM100, EM120, EM200, EM202 the signaling is exactly opposite.

# Flow Control (FC) setting

Description (see setting description format info here)		
Function:	Enables or disables hardware (RTS/CTS) flow control for the serial port of the DS (when in the <u>data routing mode</u> )	
Set (S) command format:	SFCx, where x: 0 (disabled), 1 (enabled)	
Get (G) command format:	GFC	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	1 (enabled)	
Change takes effect:	After reboot or exiting the serial programming mode	
<b>Overriding parameter:</b>	Flow Control (FC) parameter	
Relevance conditions:	current Serial Interface (SI) = 0 (full duplex)	
Compatibility with 2.5x:	Fully compatible	
See also:	Serial port and serial communications,	

### Data routing

### **Details**

**Flow Control setting** defines the behavior of the RTS and CTS lines of the DS, unless overridden by the **Flow Control (FC) parameter**.

When the **Flow Control** is 0 (disabled) the status of the CTS input is ignored and the RTS line is at HIGH* unless changed by the remote host. Remote host can control the RTS line through <u>Set I/O Pin Status (Sx) instructions</u> or **Notification (J) messages**.

When the **Flow Control** is 1 (enabled) the RTS (output) and CTS (input) lines are used to regulate the flow of data across the serial cable connecting the DS to the attached serial device.

RTS is used to regulate the flow of data from the attached serial device to the DS. When the <u>serial-to-Ethernet buffer</u> of the DS has free space the RTS is HIGH* and the serial device is free to send the data. When the buffer becomes (almost) full the DS sets the RTS line to LOW* thus telling the serial device to stop sending the data. The RTS is set to LOW* when there are less than 20 free bytes left in the <u>serial-to-Ethernet buffer</u>. Additionally, the RTS line is set to LOW* in all cases when the serial port is <u>closed</u>.

CTS is used to regulate the flow of data from the DS to the attached serial device. As long as the DS detects HIGH* on its CTS input it is free to send out the data to the attached serial device. To stop the DS from sending out the data, the serial device must set the CTS line to LOW*. The DS won't send out the data for as long as it detects LOW* on its CTS input.

When the **Flow Control** is 1 (enabled) remote host cannot remotely control the status of the RTS line. <u>Set I/O Pin Status instructions</u> addressing the RTS pin are ignored by the DS (although the **OK (A) status code** is still returned) and incoming **Notification (J) messages** also have no effect on the state of the RTS line.

Remote host can get current status of RTS and CTS lines at any time using the <u>Get I/O Pin Status (Gx) instruction</u>, regardless of whether the **Flow Control** is 0 (disabled) or 1 (enabled). Status change monitoring for RTS and CTS lines can also be enabled and <u>Notification (J) messages</u> generated regardless of the value of the **Flow Control** setting.

Flow Control is irrelevant when the current serial interface is half-duplex.

* HIGH and LOW states are described with respect to the serial ports of DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV. For EM100, EM120, EM200, EM202 the signaling is exactly opposite.

### DTR Mode (DT) setting

Description (see setting description format info here)		
Function:	Defines the function of the DTR line of the serial port of the DS	
Set (S) command format:	<b>SDT</b> <i>x</i> , where <i>x</i> : 0 (idle), 1 (connection status)	
Get (G) command format:	GDT	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	0 (idle)	

Change takes effect:	After reboot
<b>Overriding parameter:</b>	
Relevance conditions:	
Compatibility with 2.5x:	Fully compatible
See also:	Ethernet port and network communications, Serial port and serial communications

#### <u>Details</u>

When the **DTR Mode** is 0 (idle) the DTR line is at HIGH* unless changed by the remote host. Remote host can control the RTS line through **Set I/O Pin Status (Sx) instructions** or **Notification (J) messages**.

When the **DTR Mode** is 1 (connection status) the DTR (output) line of the DS reflects current connection status: the DTR line is LOW* when no data connection is established at the moment and HIGH* when there is a data connection in progress.

Remote host can get current status of the DTR line at any time using the <u>Get I/O Pin Status (Gx) instruction</u>, regardless of whether the **DTR Mode** is 0 (idle) or 1 (connection status). Status change monitoring for the DTR line can also be enabled and <u>Notification (J) messages</u> generated regardless of the value of the **DTR Mode** setting.

* HIGH and LOW states are described with respect to the serial ports of DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV. For EM100, EM120, EM200, EM202 the signaling is exactly opposite.

# Baudrate (BR) setting

Description (see setting description format info here)		
Function:	Defines the baudrate of the serial port of the DS	
<u>Set (S) command</u> format:	<b>SBR</b> <i>x</i> , where <i>x</i> : 0 (1200bps), 1 (2400bps), 2 (4800bps), 3 (9600bps), 4 (19200bps), 5 (38400bps), 6 (57600bps), 7 (115200bps), 8 (150bps), 9 (300bps), 10 (600bps), 11 (28800bps)	
Get (G) command format:	GBR	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	5 (38400bps)	
Change takes effect:	After reboot or exiting the serial programming mode	
<b>Overriding parameter:</b>	Baudrate (BR) parameter	
Relevance conditions:		
Compatibility with 2.5x:	Fully compatible	
See also:	Serial port and serial communications	

### **Details**

**Baudrate setting** defines the baudrate of the serial port of the DS.

This baudrate is used by the serial port in the <u>data routing mode</u> (unless overridden

#### 127 Tibbo Document System

by the **Baudrate (BR) parameter**) and also in the <u>serial programming mode</u>, but only if the serial programming mode was entered through the <u>escape sequence</u>. If the serial programming mode is entered by <u>pressing the setup button</u> the baudrate becomes 38400bps regardless of the value of the **Baudrate setting**.

# Parity (PR) setting

**Description** (see setting description format info <u>here</u>)

Function:	Defines the parity mode of the serial port of the DS (when in the <u>data routing mode</u> )
<u>Set (S) command</u> format:	<b>SPR</b> <i>x</i> , where <i>x</i> : 0 (off), 1 (even), 2 (odd), 3 (mark), 4 (space)
Get (G) command format:	GPR
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	0 (off)
Change takes effect:	After reboot or exiting the serial programming mode
<b>Overriding parameter:</b>	Parity (PR) parameter
Relevance conditions:	
Compatibility with 2.5x:	Fully compatible
See also:	Serial port and serial communications

# **Details**

**Parity setting** defines the parity mode of the serial port of the DS, unless overridden by the **Parity (PR) parameter**.

DS hardware does not have an option of two stop bits. The way around this is to set the Parity to 3 (mark). Since this means that the parity bit will always be set to 1 and since the parity bit is always transmitted in front of the stop bit, this will have the same result as having two stop bits.

The DS transmits the serial data with the parity bit correctly set but does not verify correctness of parity bits in the received data.

Parity is always off when the serial port is in the serial programming mode.

# Bits Per Byte (BB) setting

<b>Description</b>	(see setting	description	format info	<u>here</u> )
--------------------	--------------	-------------	-------------	---------------

Function:	Defines the bits/byte mode of the serial port of the DS (when in the <u>data routing mode</u> )
Set (S) command format:	<b>SBB</b> <i>x</i> , where <i>x</i> : 0 (7 bits), 1 (8 bits)
<u>Get (G) command</u> format:	GBB
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	1 (8 bits)
Change takes effect:	After reboot or exiting the serial programming mode
Overriding parameter:	<u>Bits per byte (PR) parameter</u>

Relevance conditions:

Compatibility with 2.5x:

See also:

Fully compatible

- - -

Serial port and serial communications

### **Details**

**Bits per byte setting** defines the bits/byte mode of the serial port of the DS, unless overridden by the **<u>Bits per byte (BB) parameter</u>**.

8 bits/byte are always used when the DS is in the serial programming mode.

# Soft Entry (SE) setting

**Description** (see setting description format info here)

Function:	Disables or enabled serial programming mode entry through escape sequence and selects escape sequence type
<u>Set (S) command</u> format:	<b>SSE</b> <i>x</i> , where <i>x</i> : 0 (disabled), 1 (type 1), 2 (type 2)
<u>Get (G) command</u> format:	GSE
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>guick initialization</u>
Post-initialization value:	0 (disabled)
Change takes effect:	After reboot or exiting the serial programming mode
Overriding parameter:	
Relevance conditions:	
Compatibility with 2.5x:	Upward-compatible (with minor deviations)
See also:	Serial programming, Data routing

### <u>Details</u>

Soft Entry controls serial programming mode entry through escape sequence:

**0 (disabled)** Serial programming mode entry through escape sequence is disabled.

**1 (type 1)** Type 1 escape sequence consists of three consecutive SOH characters (ASCII code 1). For the escape sequence to be recognized each of the characters must be preceded by a time gap of at least 100ms:

```
...previous data <--100ms--> SOH <--100ms--> SOH <--100ms-->
```

If the time gap before a certain SOH character exceeds 100ms then this chestier is considered to be a part of the escape sequence and is not recorded into the <u>serial-to-Ethernet buffer</u>. If the time gap before a certain SOH character is less than 100ms than this character is considered to be a normal data character and is saved into the serialto-Ethernet buffer. Additionally, escape character counter is reset and the escape sequence must be started again. The following example illustrates one important point (SOH characters are shown as ■). Supposing, attached serial device sends the following string:

**ABC**<--100ms-->■ <--100ms-->■ ■ **DE** 

First two SOH characters is this example had correct time gap before them, so they were counted as a part of the escape sequence and not saved into the buffer. The third SOH character did not have a correct time gap so it was interpreted as a data character and saved into the buffer. The following was routed to the network host:

#### ABC DE

The side effect and the point this example illustrates is that first two SOH characters were lost- they neither became a part of a successful escape sequence (because this sequence wasn't completed), nor were saved into the buffer.

This escape sequence is compatible with the escape sequence of firmware V2.5x with the following exception: in firmware V2.5x time gaps were not required.

**2 (type 2)** Type 2 escape sequence is not based on any timing. Escape sequence consists of SOH (ASCII code 1) character followed by any character other than SOH. To send the data character with ASCII code 01H to the network host the serial device needs to send this character twice. This will result in a single character with code 01H being saved into the serial-to-Ethernet routing buffer. It is the responsibility of the serial device to parse through the data it sends to the DS and "double" all characters with code 01H.

Example: the following sequence will make the DS enter the serial programming mode:

#### ABC∎ D

In the sequence below SOH characters will be interpreted as data (data routed to the network host will contain only one SOH character- the DS will automatically eliminate the second one):

#### ABC ■

Escape sequence of type 2 is a newly implemented sequence, it was not supported in firmware V2.5x.

# On-the-fly Commands (RC) setting

Description (see setting description format info here)		
Function:	Enables or disables <u>on-the-fly</u> command processing by the DS	
Set (S) command format:	SRCx, where x: 0 (disabled), 1 (enabled)	
Get (G) command format:	GRC	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	0 (disabled)	
Change takes effect:	After reboot	
<b>Overriding parameter:</b>		
Relevance conditions:		
Compatibility with 2.5x:	Fully compatible	
See also:	Serial port and serial communications, Authentication, On-the-fly (network-	

# side) Parameters and instructions

### **Details**

When **On-the-fly Commands setting** is 1 (enabled) the DS will accept <u>on-the-fly commands</u> (network-side parameters and instructions) from the network host. When **On-the-fly Commands setting** is 0 (disabled) the DS will reject on-the-fly commands from the host (**Denied (D) reply code** will be returned).

On-the-fly commands do not require prior <u>authentication</u> through <u>Login (L) command</u>. Password protection specifically for on-the-fly commands can be enabled through the <u>On-the-fly Password (OP) setting</u>.

On-the-fly commands provide a way of remotely controlling the serial port of the DS, hence, the name of this setting- "Remote Control".

# **On-the-fly Password (OP) setting**

**Description** (see setting description format info <u>here</u>)

Function:	Enables or disables password protection for on-the- fly commands
Set (S) command format:	SOPx, where x: 0 (disabled), 1 (enabled)
Get (G) command format:	GOP
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	0 (disabled)
Change takes effect:	After reboot
Overriding parameter:	
Relevance conditions:	On-the-fly Commands (RC) setting = 1 (enabled)
Compatibility with 2.5x:	Newly implemented setting
See also:	Serial port and serial communications, Authentication

# **Details**

<u>On-the-fly commands</u> (network-side parameters and instructions) do not require prior authentication through <u>Login (L) command</u>. **On-the-fly Password** enables password authentication specifically for on-the-fly commands, i.e. for the **Parameter (P) command** that carries them.

When **On-the-fly Password** is 1 (enabled) and the **Password (PW) setting** is set (not <NULL>) the network host must supply a valid password with every **Parameter (P) command** it sends (see this command's description for more information on how to do this).

**On-the-fly Password** is irrelevant when the **<u>On-the-fly Commands (RC) setting</u>** is 0 (disabled) because in this case the DS doesn't accept on-the-fly commands at all.

# Notification Bitmask (NB) setting

Description (see setting description format info here)		
Function:	Defines which I/O lines of the DS are monitored for changes	
<u>Set (S) command</u> format:	<b>SNB</b> <i>bbb</i> , where <b><i>bbb</i></b> is a "collection" of bit flags each of which disables (when 0) or enables (when 1) status change monitoring for a specific I/O line of the DS. Allowable value range is 0-255.	
Get (G) command format:	GNB	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	0 (status change monitoring is disabled for all I/O lines)	
Change takes effect:	After reboot	
<b>Overriding parameter:</b>		
Relevance conditions:		
Compatibility with 2.5x:	Newly implemented setting	
See also:	Serial port and serial communications, Notification Destination (ND) setting	

# **Details**

**Notification Bitmask** defines which I/O lines are monitored for changes. When the line being monitored changes its state a **Notification (J) message** is generated and sent to the network host with which the DS has an established data connection.

**Notification Bitmask** is a byte value each bit of which disables (when 0) or enables (when 1) status change monitoring for a specific I/O line. Bit assignment is as follows:

Bit position	<u>DS100R</u> , <u>EM100-EV</u>	<u>DS100B</u> , <u>DS202R</u> , <u>EM120/EM200-EV</u> *, <u>EM202-</u> <u>EV-RS</u>
0 (LSB)	<not implemented=""></not>	<not implemented=""></not>
1	<not implemented=""></not>	<not implemented=""></not>
2	<not implemented=""></not>	DSR (input)
3	<not implemented=""></not>	DTR (output)**
4	CTS (input)	CTS (input)
5	RTS (output)**	RTS (output)**
6	<not implemented=""></not>	<not implemented=""></not>
7 (MSB)	<not implemented=""></not>	<not implemented=""></not>

Firmware Manuals 132

Bit position	<u>EM100</u>	<u>EM120, EM200</u>	<u>EM202</u> , <u>EM202-</u> <u>EV-TM</u> , <u>EM202-</u> <u>EV-TS</u>
0 (LSB)	PO	<not implemented=""></not>	<not implemented&gt;</not 
1	P1	<not implemented=""></not>	<not implemented&gt;</not 
2	P2/DSR(input)***	P2/DSR(input)***	P2/DSR(input)***
3	P3/DTR(output)***	P3/DTR(output)***	P3/DTR(output)** *
4	P4/CTS(input)***	P4/CTS(input)***	P4/CTS(input)***
5	P5/RTS(output)***	P5/RTS(output)***	P5/RTS(output)** *
6	<not implemented=""></not>	P6	<not implemented&gt;</not 
7 (MSB)	<not implemented=""></not>	Р7	<not implemented&gt;</not 

* This data is for the case when you are using RS232 FB9M connector of the EM120/EM200-EV. If you are using <u>expansion connector</u> (three jumpers removed) then use I/O data for the EM120 and EM200 Modules

** From firmware standpoint, these are general-purpose I/O lines. These I/O lines, however, are connected to the CMOS inputs of RS232 (RS422, RS485) transceivers and that dictates that the lines can only be used as outputs. Therefore, it is meaningless to enable notifications for such lines

*** These are general-purpose input/output pins. Application firmware uses these pins to implement specific serial port functionality (shown in blue) and this defines "logical" direction of the pins

<u>Example:</u> if **Notification Bitmask** is set to 20 then status change monitoring is enabled for lines DSR and CTS (binary representation of this value is 00010100, bits 2 and 4 are set, corresponding I/O lines are DSR and CTS).

Be sure to keep the mask bit for unimplemented and reserved lines at 0.

For the line status change to be detected, the new status must be preserved for at least 0.5 second. Shorter "pulses" are ignored.

Note, that there is no bit for line P8 found on EM120 and EM200 Modules.

# **Encapsulation settings**

**Encapsulation settings** define what incoming serial data is recorded into the serial-to-Ethernet routing buffer and when and how this data is combined into the network packets and sent to the network host. For more information see <u>serial-to-</u><u>Ethernet data routing</u>.

The following settings belong to this group:

Setting	Description
Maximum Packet Length (ML) setting	Defines after how many new bytes recorded into the serial- to-Ethernet buffer a break condition will be generated
Maximum Intercharacter Delay (MD) setting	Defines the maximum time gap between two consecutive characters recorded into the serial-to-Ethernet buffer, exceeding which will trigger a break condition
Start On Any Character (SA) setting	Defines whether the (next) data block can be opened by a specific character or any character
Use Start Character (F1) setting	Enables or disables the use of the start character
Start Character Code (S1) setting	Defines ASCII code of the start character
Use Stop Character (U1) setting	Enables or disables the use of the stop character
Stop Character Code (E1) setting	Defines ASCII code of the stop character
Number of Post Characters (P1) setting	Defines the number of post characters for the stop character

#### Maximum Packet Length (ML) setting

**Description** (see setting description format info here) **Function:** Defines after how many new bytes recorded into the <u>serial-to-Ethernet buffer</u> a break condition will be generated Set (S) command format: **SML***III*, where *III* is the number of new bytes in the 1-255 range Get (G) command format: GML **Init (I) command effect:** Initialized unconditionally, through network command, serial command, or quick initialization Post-initialization value: 255 (bytes) Change takes effect: After reboot or exiting the serial programming mode **Overriding parameter: Relevance conditions:** Current Transport Protocol (TP) [setting/ parameter] = 0 (UDP) **Compatibility with 2.5x:** Fully compatible See also: Serial-to-Ethernet data routing

# **Details**

**Maximum Packet Length** defines after how many new bytes recorded into the serial-to-Ethernet buffer a break condition will be generated. Break conditions are

related to routing the data in the serial-to-Ethernet direction. See <u>serial-to-</u> <u>Ethernet data routing</u> for more information.

**Maximum Packet Length** is irrelevant when **current Transport Protocol (TP)** [setting/ parameter] is 1 (TCP) because in this mode the DS ignores the value of the **Maximum Packet Length setting** and uses the run-time parameter of 127 bytes.

#### Maximum Intercharacter Delay (MD) setting

Description (see setting description format info here)		
Function:	Defines the maximum time gap between two consecutive characters recorded into the serial-to- Ethernet buffer, exceeding which will trigger a break condition	
<u>Set (S) command</u> format:	<b>SMD</b> <i>ddd</i> , where <i>ddd</i> is the time gap in the 0-255 range (0-2550 ms), value of 0 deactivates break condition generation on time gaps	
<u>Get (G) command</u> format:	GMD	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>guick initialization</u>	
Post-initialization value:	1 (10 ms)	
Change takes effect:	After reboot or exiting the serial programming mode	
Overriding parameter:		
<b>Relevance conditions:</b>		
Compatibility with 2.5x:	Fully compatible	
See also:	Serial-to-Ethernet data routing	

### **Details**

**Maximum Intercharacter Delay** defines the maximum time gap between two consecutive characters recorded into the serial-to-Ethernet buffer, exceeding which will trigger a break condition. Break conditions are related to routing the data in the serial-to-Ethernet direction. See <u>serial-to-Ethernet data routing</u> for more information.

Intercharacter delay can be set in 10 ms increments. Delay tracking is disabled when **Maximum Intercharacter Delay** is set to 0.

Intercharacter delay is not counted when the **Flow Control (FC) setting** is 1 (enabled) and the DS is holding the RTS line in the LOW* state thus indicating to the attached serial device that the DS is not ready to receive the data. This is done to prevent the DS from generating the break conditions on time gaps caused by the DS itself.

* HIGH and LOW states are described with respect to the serial ports of DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV. For EM100, EM120, EM200, EM202 the signaling is exactly opposite.

# Start On Any Character (SA) setting

Description (see setting description format info here)		
Function:	Defines whether the (next) serial data block can be opened by a specific character or any character	
<u>Set (S) command</u> format:	SSAx, where x: 0 (disabled), 1 (enabled)	
<u>Get (G) command</u> format:	GSA	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	1 (enabled)	
Change takes effect:	After reboot or exiting the serial programming mode	
Overriding parameter:		
<b>Relevance conditions:</b>		
Compatibility with 2.5x:	Fully compatible	
See also:	Serial-to-Ethernet data routing	

### **Details**

When **Start On Any Character** is 1 (enabled) then any character received into the serial port past the end of the previous serial data block will open a new serial data block. When the **Start On Any Character** is 0 (disabled) then only a selected specific character defined by the **Start Character Code (S1) setting** (must be enabled through the **Use Start Character (F1) setting**) will be able to open the new serial data block. All data between the end of the previous serial data block and this start character will be ignored.

Serial data blocks are related to routing the data in the serial-to-Ethernet direction. For more information see <u>serial-to-Ethernet data routing</u>.

# Use Start Character (F1) setting

**Description** (see setting description format info here)

Function:	Enables or disables the use of the start character
Set (S) command format:	SF1x, where x: 0 (disabled), 1 (enabled)
Get (G) command format:	GF1
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	0 (disabled)
Change takes effect:	After reboot or exiting the serial programming mode
Overriding parameter:	
Relevance conditions:	Start On Any Character (SA) setting= 0 (disabled)
Compatibility with 2.5x:	Fully compatible
See also:	Serial-to-Ethernet data routing

#### <u>Details</u>

This setting enables the use of specific character code as the start character that can open the serial data block. Start character code itself is defined by the **Start Character Code (S1) setting**. Serial data blocks are related to routing the data in the serial-to-Ethernet direction. See <u>serial-to-Ethernet data routing</u> for more information.

**Use Start Character** is irrelevant when the **Start on Any Character (SA) setting** is 1 (enabled) because in this case the new serial data block is opened by any character and there is no need to set a specific start character.

Care should be taken not to disable **Use Start Character** and **<u>Start on Any Character (SA) setting</u>** at the same time. No data will ever be accepted into the serial port of the DS in this case!

Firmware V2.5x allowed to define up to three start characters. This functionality has been determined to be excessive while slowing down the routing performance of the DS. Only one start character can be set now.

# Start Character Code (S1) setting

**Description** (see setting description format info <u>here</u>)

Function:	Defines ASCII code of the start character
<u>Set (S) command</u> format:	<b>SS1</b> $ccc$ , where $ccc$ is the ASCII code of the start character in the 0-255 range
Get (G) command format:	GS1
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	0
Change takes effect:	After reboot or exiting the serial programming mode
<b>Overriding parameter:</b>	
Relevance conditions:	<u>Start On Any Character (SA) setting</u> = 0 (disabled) AND <u>Use Start Character (F1) setting</u> = 1 (enabled)
Compatibility with 2.5x:	Fully compatible
See also:	Serial-to-Ethernet data routing

### **Details**

This setting defines the ASCII code of the start character that can open the serial data block. Start character must be enabled separately through the **Use Start Character (F1) setting**. Serial data blocks are related to routing the data in the serial-to-Ethernet direction. See <u>serial-to-Ethernet data routing</u> for more information.

**Start Character Code** is irrelevant when the **Start on Any Character (SA) setting** is 1 (enabled) because in this case the new serial data block is opened by any character and there is no need to set a specific start character.

Firmware V2.5x allowed define up to three start characters. This functionality has been determined to be excessive while slowing down the routing performance of the DS. Only one start character can be set now.

# Use Stop Character (U1) setting

<b>Description</b> (see setting description format info <u>here</u> )		
Function:	Enables or disables the use of the stop character	
Set (S) command format:	SU1x, where x: 0 (disabled), 1 (enabled)	
Get (G) command format:	GU1	
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>	
Post-initialization value:	0 (disabled)	
Change takes effect:	After reboot or exiting the serial programming mode	
<b>Overriding parameter:</b>		
Relevance conditions:		
Compatibility with 2.5x:	Fully compatible	
See also:	Serial-to-Ethernet data routing	

### <u>Details</u>

This setting enables the use of specific character code as the stop character that can close the serial data block. Stop character code itself is defined by the **Stop Character Code (S1) setting**. It is also possible to have the serial data block closed not on the stop character itself but after a predefined number of characters after the stop character. This is done through the **Number Of Post Characters (P1) setting**.

Serial data blocks are related to routing the data in the serial-to-Ethernet direction. See <u>serial-to-Ethernet data routing</u> for more information.

If **Use Stop Character** is 0 (disabled) the serial data block, once opened, never closes.

Firmware V2.5x allowed to define up to three stop characters. This functionality has been determined to be excessive while slowing down the routing performance of the DS. Only one stop character can be set now.

# Stop Character Code (E1) setting

**Description** (see setting description format info <u>here</u>)

Function:	Defines ASCII code of the stop character
Set (S) command format:	<b>SE1ccc</b> , where $ccc$ is the ASCII code of the stop character in the 0-255 range
Get (G) command format:	GE1
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>quick initialization</u>
Post-initialization value:	0
Change takes effect:	After reboot or exiting the serial programming mode
<b>Overriding parameter:</b>	
Relevance conditions:	Use Stop Character (U1) setting = 1 (enabled)
Compatibility with 2.5x:	Fully compatible

#### See also:

#### Serial-to-Ethernet data routing

#### <u>Details</u>

This setting defines the ASCII code of the stop character that can close the serial data block. The usage of the stop character must be enabled separately through the **Use Stop Character (U1) setting**. It is also possible to have the serial data block closed not on the stop character itself but after a predefined number of characters after the stop character. This is done through the **Number Of Post Characters (P1) setting**.

Serial data blocks are related to routing the data in the serial-to-Ethernet direction. See <u>serial-to-Ethernet data routing</u> for more information.

Firmware V2.5x allowed to define up to three stop characters. This functionality has been determined to be excessive while slowing down the routing performance of the DS. Only one start character can be set now.

### Number Of Post Characters (P1) setting

# **Description** (see setting description format info here)

Function:	Defines the number of post characters for the stop character
<u>Set (S) command</u> format:	<b>SP1</b> <i>x</i> , where <i>x</i> : is the number of post characters in the 0-15 range
Get (G) command format:	GP1
Init (I) command effect:	Initialized unconditionally, through network command, serial command, or <u>guick initialization</u>
Post-initialization value:	0
Change takes effect:	After reboot or exiting the serial programming mode
<b>Overriding parameter:</b>	
Relevance conditions:	Use Stop Character (U1) setting = 1 (enabled)
Compatibility with 2.5x:	Fully compatible
See also:	Serial-to-Ethernet data routing, Stop Character Code (E1) setting

#### <u>Details</u>

**Number Of Post Characters** defines the number of characters received past the stop character that will still be counted as belonging to the same serial data block. Serial data blocks are related to routing the data in the serial-to-Ethernet direction. See <u>serial-to-Ethernet data routing</u> for more information.

Number of Post Characters is irrelevant when the

**Use Stop Character (U1) setting** is 0 (disabled) because in this case the stop character is disabled.

Firmware V2.5x allowed to define up to three stop characters. This functionality has been determined to be excessive while slowing down the routing performance of the DS. Only one start character can be set now.

# Parameters and instructions

This section contains a reference for all DS parameters and instructions.

Parameters are *temporary overrides* for settings. Parameters are not saved into the EEPROM and take immediate effect (no rebooting required). **Instructions** are used to make the DS perform a certain action.

Parameter and instruction description format can be found here.

#### All parameters and instructions can be divided into two groups:

- On-the-fly (network-side) parameters and instructions are delivered to the DS via the network Parameter (P) command and are used to change communications mode of the serial port of the DS without rebooting (i.e. "on-the-fly") and also set and sense the state of the I/O lines of the DS. For more information see serial port and serial communications;
- Modem (serial-side) parameters and instructions are delivered to the DS via the serial Parameter (P) command and are used to control data connection establishment and termination by the DS. For more information see Ethernet port and network communications.

#### Parameter & instruction description format

# All parameters and instructions in this section are described using the following format:

Function:	Parameter (instruction) function in brief
<u>Parameter (P) cmd</u> format:	Syntax of the <b>Parameter (P) command</b> that is used to send this parameter (instruction)
Possible <u>replies</u> :	Lists all possible reply status codes that can be returned in response to the <b>Parameter (P) command</b> carrying this parameter (instruction)
<b>Relevance conditions:</b>	Some parameters (instructions) are relevant to the operation of the DS only when other settings (or their overriding parameters) have certain values
Compatibility with 2.5x:	Describes whether this parameter is new, upward- compatible, or fully compatible with the firmware V2.5x
See also:	Additional relevant links

#### **Details**

Additional information about the parameter (instruction).

### On-the-fly (network-side) parameters & instructions

**On-the-fly (network-side) parameters and instructions** are delivered to the DS via the *network* **Parameter (P) command** and are used to change communications mode of the serial port of the DS without rebooting (i.e. "on-the-fly") and also set and sense the state of the I/O lines of the DS. For more information see <u>serial port and serial communications</u>.

#### The following parameters and instructions belong to this group:

Parameter/ instruction	Description	
Flow Control (FC) parameter	Overrides Flow Control (FC) setting	
Baudrate (BR) parameter	Overrides Baudrate (BR) setting	
Parity (PR) parameter	Overrides Parity (PR) setting	
Bits Per Byte (BB) parameter	Overrides Bits Per Byte (BB) setting	
Notification Bitmask (NB) parameter	Overrides Notification Bitmask (NB) setting	
Get I/O Pin Status (Gx) instruction	Reads the status of a certain I/O line of the DS	
Set I/O Pin Status (Sx) instruction	Sets the status of a certain I/O line of the DS	

# Flow Control (FC) parameter

**Description** (see parameter description format info here)

Function:	Overrides Flow Control (FC) setting	
Parameter (P) cmd format:	<b>PFCx</b> , where <b>x</b> : 0 (disabled), 1 (enabled)	
Possible <u>replies</u> :	A, C, D, R	
<b>Relevance conditions:</b>	current Serial Interface (SI) = 0 (full duplex)	
Compatibility with 2.5x:	Fully compatible	
See also:	Serial port and serial communications	

### <u>Details</u>

#### Flow Control parameter overrides the Flow Control (FC) setting.

**Error (C) reply code** is returned if the data supplied in the command is invalid. **Denied (D) reply code** is returned if:

- **On-the-fly Commands (RC) setting** is 0 (disabled).
- If no password or incorrect password is supplied while the <u>On-the-</u> <u>fly Password (OP) setting</u> is 1 (enabled) and the password is set (value of the <u>Password (PW) setting</u> is not <NULL>).

**Rejected (R) reply code** is returned if this command is sent while the DS is in the serial programming mode.

# Baudrate (BR) parameter

Description (see parameter description format info here)		
Function:	Overrides Baudrate (BR) setting	
<u>Parameter (P) cmd</u> format:	<b>PBR</b> <i>x</i> , where <i>x</i> : 0 (1200bps), 1 (2400bps), 2 (4800bps), 3 (9600bps), 4 (19200bps), 5 (38400bps), 6 (57600bps), 7 (115200bps), 8 (150bps), 9 (300bps), 10 (600bps), 11 (28800bps)	
Possible <u>replies</u> :	A, C, D, R	
<b>Relevance conditions:</b>		
Compatibility with 2.5x:	Fully compatible	
See also:	Serial port and serial communications	

### **Details**

Baudrate parameter overrides the Baudrate (BR) setting.

**Error (C) reply code** is returned if the data supplied in the command is invalid. **Denied (D) reply code** is returned if:

- **On-the-fly Commands (RC) setting** is 0 (disabled).
- If no password or incorrect password is supplied while the <u>On-the-</u> <u>fly Password (OP) setting</u> is 1 (enabled) and the password is set (value of the <u>Password (PW) setting</u> is not <NULL>).

**Rejected (R) reply code** is returned if this command is sent while the DS is in the <u>serial programming mode</u>.

# Parity (PR) parameter

**Description** (see parameter description format info here)

Function:	Overrides Parity (PR) setting
Parameter (P) cmd format:	<b>PPR</b> <i>x</i> , where <i>x</i> : 0 (off), 1 (even), 2 (odd), 3 (mark), 4 (space)
Possible <u>replies</u> :	A, C, D, R
Relevance conditions:	
Compatibility with 2.5x:	Fully compatible
See also:	Serial port and serial communications

### **Details**

Parity parameter overrides the **Parity (PR) setting**.

**Error (C) reply code** is returned if the data supplied in the command is invalid. **Denied (D) reply code** is returned if:

- On-the-fly Commands (RC) setting is 0 (disabled).
- If no password or incorrect password is supplied while the <u>On-the-</u> <u>fly Password (OP) setting</u> is 1 (enabled) and the password is set (value of the <u>Password (PW) setting</u> is not <NULL>).

**Rejected (R) reply code** is returned if this command is sent while the DS is in the serial programming mode.

#### Bits Per Byte (BB) parameter

**Description** (see parameter description format info here)

Function:	Overrides Bits Per Byte (BB) setting
Parameter (P) cmd format:	<b>PBB</b> <i>x</i> , where <i>x</i> : 0 (7 bits), 1 (8 bits)
Possible <u>replies</u> :	A, C, D, R
<b>Relevance conditions:</b>	
Compatibility with 2.5x:	Fully compatible
See also:	Serial port and serial communications

#### **Details**

Bits Per Byte parameter overrides the Bits Per Byte (BB) setting.

**Error (C) reply code** is returned if the data supplied in the command is invalid. **Denied (D) reply code** is returned if:

- **On-the-fly Commands (RC) setting** is 0 (disabled).
- If no password or incorrect password is supplied while the <u>On-the-</u> <u>fly Password (OP) setting</u> is 1 (enabled) and the password is set (value of the <u>Password (PW) setting</u> is not <NULL>).

**Rejected (R) reply code** is returned if this command is sent while the DS is in the <u>serial programming mode</u>.

# Notification Bitmask (NB) parameter

**Description** (see parameter description format info here)

Function:	Overrides Notification Bitmask (NB) setting	
Parameter (P) cmd format:	<b>PNB</b> <i>bbb</i> , where <i>bbb</i> is a "collection" of bit flags each of which disables (when 0) or enables (when 1) status change monitoring for a specific I/O line of the DS. Allowable value range is 0-255	
Possible <u>replies</u> :	A, C, D, R	
Relevance conditions:		
Compatibility with 2.5x:	Newly implemented parameter	
See also:	Serial port and serial communications	

### <u>Details</u>

**Notification Bitmask parameter** overrides the **Notification Bitmask (NB) setting**. See **Notification Bitmask (NB) setting** for the bit position assignment within the **bbb** value.

**Error (C) reply code** is returned if the data supplied in the command is invalid. **Denied (D) reply code** is returned if:

- **On-the-fly Commands (RC) setting** is 0 (disabled).
- If no password or incorrect password is supplied while the <u>On-the-</u> <u>fly Password (OP) setting</u> is 1 (enabled) and the password is set (value of the <u>Password (PW) setting</u> is not <NULL>).

**Rejected (R) reply code** is returned if this command is sent while the DS is in the serial programming mode.

# Get I/O Pin Status (Gx) instruction

**Description** (see instruction description format info here)

Function:	Reads the status of a certain I/O line of the DS	
<u>Parameter (P) cmd</u> format:	<b>PG</b> <i>x</i> , where <i>x</i> is the I/O line number	
Possible <u>replies</u> :	<b>As</b> , <b>C</b> , <b>D</b> , <b>R</b> , where <i>s</i> is the state of I/O line (0 or 1)	

# Relevance conditions:

---

Compatibility with 2.5x:

See also:

Upward-compatible

Serial port and serial communications

### <u>Details</u>

**Get I/O Pin Status instruction** returns the status of the DS I/O line specified by the *x* parameter:

Value of x	<u>DS100R</u> , <u>EM100-EV</u>	<u>DS100B</u> , <u>DS202R</u> , <u>EM120/EM200-EV</u> *, <u>EM202-</u> <u>EV-RS</u>
0	<not implemented=""></not>	<not implemented=""></not>
1	<not implemented=""></not>	<not implemented=""></not>
2	<not implemented=""></not>	DSR (input)**
3	<not implemented=""></not>	DTR (output)**
4	CTS (input)	CTS (input)**
5	RTS (output)**	RTS (output)**
6	<not implemented=""></not>	<not implemented=""></not>
7	<not implemented=""></not>	<not implemented=""></not>
8	<not implemented=""></not>	<not implemented=""></not>

Value of <i>x</i>	<u>EM100</u>	<u>EM120</u> , <u>EM200</u>	<u>EM202</u> , <u>EM202-</u> <u>EV-TM</u> , <u>EM202-</u> <u>EV-TS</u>
0	PO	<not implemented=""></not>	<not implemented&gt;</not 
1	P1	<not implemented=""></not>	<not implemented&gt;</not 
2	P2/DSR(input)***	P2/DSR(input)***	P2/DSR(input)***
3	P3/DTR(output)***	P3/DTR(output)***	P3/DTR(output)** *
4	P4/CTS(input)***	P4/CTS(input)***	P4/CTS(input)***
5	P5/RTS(output)***	P5/RTS(output)***	P5/RTS(output)** *
6	<not implemented=""></not>	P6	<not implemented&gt;</not 
7	<not implemented=""></not>	Р7	<not implemented&gt;</not 
8	<not implemented=""></not>	P8	<not implemented&gt;</not 

* This data is for the case when you are using RS232 FB9M connector of the EM120/EM200-EV. If you are using <u>expansion connector</u> (three jumpers removed) then use I/O data for the EM120 and EM200 Modules

** From firmware standpoint, these are general-purpose lines of the Ethernet Modules that can be used as inputs. These I/O lines, however, are connected to the CMOS inputs of RS232 (RS422, RS485) transceivers and that dictates that the lines can only be used as outputs.

*** These are general-purpose input/output pins. Application firmware uses these

pins to implement specific serial port functionality (shown in blue) and this defines "logical" direction of the pins

I/O line status (s) returned by the **Get I/O Pin Status instruction** indicates current status of the I/O lines of Modules. For Serial Device Servers and Boards that incorporate RS232 transceivers actual line status on the RS232 connector actual line status is exactly opposite to the value of s: if s=0 then the line is at HIGH, if s=1-the line is at LOW. Notice, that not only inputs, but also outputs can be monitored using this command.

**Error (C) reply code** is returned if the data supplied in the command is invalid. **Denied (D) reply code** is returned if:

- **<u>On-the-fly Commands (RC) setting</u>** is 0 (disabled).
- If no password or incorrect password is supplied while the <u>On-the-</u> <u>fly Password (OP) setting</u> is 1 (enabled) and the password is set (value of the <u>Password (PW) setting</u> is not <NULL>).

**Rejected (R) reply code** is returned if this command is sent while the DS is in the <u>serial programming mode</u>.

I/O line status can be set using Set I/O Pin Status (Sx) instruction.

This command is upward-compatible with the one implemented in firmware V2.5x. Newly added feature is the possibility to read the status of P4/CTS, P5/RTS, P6, P7, and P8.

### Set I/O Pin Status (Sx) instruction

**Description** (see instruction description format info here)

Function:	Sets the status of a certain I/O line of the DS
<u>Parameter (P) cmd</u> format:	<b>PS</b> $xs$ , where $x$ is the I/O line number and $s$ is the desired status of the I/O line (0 or 1)
Possible <u>replies</u> :	A, C, D, R
<b>Relevance conditions:</b>	
Compatibility with 2.5x:	Upward-compatible
See also:	Serial port and serial communications

### <u>Details</u>

**Sets I/O Pin Status instruction** allows the network host to remotely set the status of the DS I/O line. Parameter **x** specifies the I/O line:

Value of <i>x</i>	<u>DS100R</u> , <u>EM100-EV</u>	<u>DS100B</u> , <u>DS202R</u> , <u>EM120/EM200-EV</u> *, <u>EM202-</u> <u>EV-RS</u>
0	<not implemented=""></not>	<not implemented=""></not>
1	<not implemented=""></not>	<not implemented=""></not>
2	<not implemented=""></not>	DSR (input)**
3	<not implemented=""></not>	DTR (output)
4	CTS (input)**	CTS (input)**
5	RTS (output)	RTS (output)
6	<not implemented=""></not>	<not implemented=""></not>
7	<not implemented=""></not>	<not implemented=""></not>
8	<not implemented=""></not>	<not implemented=""></not>

Value of <i>x</i>	<u>EM100</u>	<u>EM120</u> , <u>EM200</u>	<u>EM202</u> , <u>EM202-</u> <u>EV-TM</u> , <u>EM202-</u> <u>EV-TS</u>
0	PO	<not implemented=""></not>	<not implemented&gt;</not 
1	P1	<not implemented=""></not>	<not implemented&gt;</not 
2	<cannot be="" set="">***</cannot>	P2/DSR(input)****	P2/DSR(input)*** *
3	P3/DTR(output)****	P3/DTR(output)****	P3/DTR(output)** **
4	P4/CTS(input)****	P4/CTS(input)****	P4/CTS(input)*** *
5	P5/RTS(output)****	P5/RTS(output)****	P5/RTS(output)** **
6	<not implemented=""></not>	P6	<not implemented&gt;</not 
7	<not implemented=""></not>	Р7	<not implemented&gt;</not 
8	<not implemented=""></not>	P8	<not implemented&gt;</not 

* This data is for the case when you are using RS232 FB9M connector of the EM120/EM200-EV. If you are using <u>expansion connector</u> (three jumpers removed) then use I/O data for the EM120 and EM200 Modules

** From firmware standpoint, these are general-purpose lines of the Ethernet Modules that can be used as outputs. These I/O lines, however, are connected to the CMOS outputs of RS232 (RS422, RS485) transceivers and that dictates that the lines must only be used as inputs.

*** Hardware limitation

**** These are general-purpose input/output pins. Application firmware uses these pins to implement specific serial port functionality (shown in blue) and this defines "logical" direction of the pins

Desired I/O line state (s) corresponds to the status of I/O lines of Modules. For Serial Device Servers and Boards that incorporate RS232 transceivers actual line status on the RS232 connector is exactly opposite to the value of s: if s=0 then the line will be set to HIGH, if s=1- the line will be set to LOW.

145

**Error (C) reply code** is returned if the data supplied in the command is invalid. **Denied (D) reply code** is returned if:

- **<u>On-the-fly Commands (RC) setting</u>** is 0 (disabled).
- If no password or incorrect password is supplied while the <u>On-the-</u> <u>fly Password (OP) setting</u> is 1 (enabled) and the password is set (value of the <u>Password (PW) setting</u> is not <NULL>).

**Rejected (R) reply code** is returned if this command is sent while the DS is in the <u>serial programming mode</u>.

There are several cases when the **Set I/O Pin Status (Sx) instruction** is ignored by the DS:

- When the **current Flow Control (FC) [setting/ parameter]** is 1 (enabled) or **current <u>Serial Interface (SI)</u>** is 1 (half-duplex) the DS ignores **SP5***s* commands (i.e. commands that attempt to set the status of the RTS line). This is because in this case the RTS line is under the internal control of the DS.
- When the **<u>DTR Mode (DT) setting</u>** is 1 (connection status) the DS ignores **SP3***s* commands (i.e. commands that attempt to set the status of the DTR line). This is because in this case the DTR line is under the internal control of the DS.

Note, that in all above cases the DS still returns **OK (A) reply code** but the commands are discarded internally.

This command is upward-compatible with the one implemented in firmware V2.5x. Newly added feature is the possibility to set the status of P4/CTS, P5/RTS, P6, P7, and P8.

### Modem (serial-side) parameters & instructions

**Modem (serial-side) parameters and instructions** are delivered to the DS via the *serial* **<u>Parameter (P) command</u>** and are used to control data connection establishment and termination by the DS. For more information see <u>Ethernet port and network communications</u>.

### The following parameters and instructions belong to this group:

Parameter/ instruction	Description
Transport Protocol (TP) parameter	Overrides
	Transport Protocol (TP) setting
Routing Mode (RM) parameter	Overrides
	Routing Mode (RM) setting
<b>Destination IP-address (DI) parameter</b>	Overrides Destination IP-
	address (DI) setting
<b>Destination Port Number (DP) parameter</b>	Overrides
	<b>Destination Port Number (PN) setti</b>
	ng
Establish Connection (CE) instruction	Makes the DS establish data
	connection with the network host
<b>Close Connection (CC) instruction</b>	Makes the DS close data connection
	with the network host, reset buffer
	overflow flags
Abort Connection (CA) instruction	Makes the DS abort data connection
	with the network host, reset buffer
	overflow flags

### Transport Protocol (TP) parameter

<b>Description</b> (see parameter description format info here)		
Overrides Transport Protocol (TP) setting		
<b>PTP</b> <i>x</i> , where <i>x</i> : 0 (UDP), 1 (TCP)		
A, C, R		
Newly implemented parameter		
Ethernet port and network communications		

### **Details**

Transport Protocol parameter overrides the Transport Protocol (TP) setting.

**Error (C) reply code** is returned if the data supplied in the command is invalid. **Rejected (R) reply code** is returned if:

- Command is issued while the IP-address of the DS is not properly configured (<u>DHCP (DH) setting</u> is 1 (enabled) and the DS hasn't yet obtained the IP-address from the DHCP server).
- Current data connection state is *not* "closed". Transport protocol cannot be changed while the connection is in progress. Close (or shut) the connection using the <u>Close Connection (CC) instruction</u> or <u>Abort Connection (CA) instruction</u> first. Current connection status can be verified using <u>Echo (X) command</u> (*c* flag).

### **Routing Mode (RM) parameter**

Description (see parameter description format info here)		
Function:	Overrides Routing Mode (RM) setting	
<u>Parameter (P) cmd</u> format:	<b>PRM</b> <i>x</i> , where <i>x</i> : 0 (server), 1 (server/client), 2 (client)	
Possible <u>replies</u> :	A, C, R	
Relevance conditions:		
Compatibility with 2.5x:	Newly implemented parameter	
See also:	Ethernet port and network communications	

### <u>Details</u>

Routing Mode parameter overrides the Routing Mode (RM) setting.

**Error (C) reply code** is returned if the data supplied in the command is invalid. **Rejected (R) reply code** is returned if this command is issued while the IP-address of the DS is not properly configured (**DHCP (DH) setting** is 1 (enabled) and the DS hasn't yet obtained the IP-address from the DHCP server).

### **Destination IP-address (DI) parameter**

. ..

<b>Description</b> (see parameter description format info here)		
Function:	Overrides Destination IP-address (DI) setting	
<u>Parameter (P) cmd</u> format:	<b>PDI</b> <i>xxx.xxx.xxx</i> , where <i>xxx.xxx.xxx</i> is the IP-address of the destination in dot-decimal notation (i.e. 192.168.100.41)	
Possible <u>replies</u> :	A, C, R	
Relevance conditions:	Current Routing Mode (RM) [ <u>setting</u> / parameter]= 1 (server/client) or 2 (client)	
Compatibility with 2.5x:	Newly implemented parameter	
See also:	Ethernet port and network communications, Establish Connection (CE) instruction	

### **Details**

**Destination IP-address parameter** overrides the **Destination IP-address (DI) setting**.

**Error (C) reply code** is returned if the data supplied in the command is invalid. **Rejected (R) reply code** is returned if:

- Command is issued while the IP-address of the DS is not properly configured (<u>DHCP (DH) setting</u> is 1 (enabled) and the DS hasn't yet obtained the IP-address from the DHCP server).
- Current data connection state is *not* "closed". Destination IP-address cannot be changed while the data connection is in progress. Close (or shut) the connection using the <u>Close Connection (CC) instruction</u> or <u>Abort Connection (CA) instruction</u> first. Current connection status can be verified through <u>Echo (X) command</u> (*c* flag).

### **Destination Port Number (DP) parameter**

**Description** (see parameter description format info here)

Function:	Overrides Destination Port Number (PN) setting
Parameter (P) cmd format:	<b>PDP</b> <i>pppp</i> , where <b><i>pppp</i></b> is the port number of the destination in the 0-65535 range
Possible <u>replies</u> :	A, C, R
Relevance conditions:	Current Routing Mode (RM) [ <u>setting</u> / parameter]= 1 (server/client) or 2 (client)
Compatibility with 2.5x:	Newly implemented parameter
See also:	Ethernet port and network communications, Establish Connection (CE) instruction

### <u>Details</u>

**Destination Port Number parameter** overrides the **Destination Port Number (DI) setting**.

Error (C) reply code is returned if the data supplied in the command is invalid.

#### Rejected (R) reply code is returned if:

- Command is issued while the IP-address of the DS is not properly configured (<u>DHCP (DH) setting</u>is 1 (enabled) and the DS hasn't yet obtained the IP-address from the DHCP server).
- Current data connection state is *not* "closed". Destination port number cannot be changed while the data connection is in progress. Close (or shut) the connection using the <u>Close Connection (CC) instruction</u> or <u>Abort Connection (CA) instruction</u> first. Current connection status can be verified through Echo (X) command (c flag).

### **Establish Connection (CE) instruction**

. . .

<b>Description</b> (see instruction description format info <u>here</u> )		
Function:	Makes the DS establish the data connection with the network host	
<u>Parameter (P) cmd</u> format:	<b>PCE</b> or <b>PCE</b> <i>xxxxxxxxxxxxxppppp</i> , where <i>xxxxxxxxxxxxxxxxxxxxxx</i>	
Possible <u>replies</u> :	A, C, R	
Relevance conditions:	Current Routing Mode (RM) [ <u>setting</u> / parameter]= 1 (server/client) or 2 (client)	
Compatibility with 2.5x:	Newly implemented instruction	
See also:	Ethernet port and network communications	

### **Details**

**Establish Connection instruction** makes the DS establish an outgoing connection with the network host. Which transport protocol is used (UDP or TCP) is defined by the **current Transport Protocol (TP)** [setting/parameter].

This command has two syntax options: with and without destination IP-address and destination port number fields. Both fields must be either supplied or not supplied, it is not possible to have only one of the fields in the command body.

When destination fields are not provided the DS will use the following destination IPaddress and port number to connect to:

- If, since the last time the PDI (<u>Destination IP-address (DI) parameter</u>) and PDP (<u>Destination Port Number (DP) parameter</u>) commands were issued the DS hasn't received any incoming connections from other network hosts then the DS will attempt to connect to the destination IP-address and port number defined by these recent PDI and PDP commands;
- If (since the most recent PDI and PDP commands) the DS has accepted an incoming data connection then the DS will *reread* the values of <u>Destination IP-</u>

**address (DI) setting** and **Destination Port Number (DP) setting** and attempt to connect to the destination host defined by these settings.

<u>TCP data connections</u> are established in a normal way by initiating the SYN-SYN-ACK exchange with the network host. <u>UDP data "connections"</u> are established by sending a UDP datagram of zero length.

**OK (A) reply code** is returned if command is accepted. This does not mean that the data connection has been established already, only that the DS has accepted the command. Actual connection status can be verified at any time using the **Echo (X) command** (see *c* flag). Actual IP-address and port number of the destination host with which the DS has a data connection can be verified using the **Status (U) command**.

**Error (C) reply code** is returned if the data supplied in the command is invalid (or only one of the data fields is present). **Rejected (R) reply code** is returned if:

- Command is issued while the IP-address of the DS is not properly configured (<u>DHCP (DH) setting</u> is 1 (enabled) and the DS hasn't yet obtained the IP-address from the DHCP server);
- Current data connection state is *not* "closed". Close (or shut) the connection first using the <u>Close Connection (CC) instruction</u> or <u>Abort Connection (CA) instruction;</u>
- Current Routing Mode (RM) [setting/ parameter] is 0 (server), because in this state the DS is not allowed to establish outgoing connections.

### **Close Connection (CC) instruction**

**Description** (see instruction description format info here)

Function:	Makes the DS close the data connection with the network host, reset buffer overflow flags
Parameter (P) cmd format:	PCC
Possible <u>replies</u> :	Α
<b>Relevance conditions:</b>	
Compatibility with 2.5x:	Newly implemented instruction
See also:	Ethernet port and network communications, Establish Connection (CE) instruction.

### <u>Details</u>

**Close Connection instruction** makes the DS close current data connection (if existed) and also reset routing buffers overflow flags (overflows are displayed by the <u>status LEDs</u>, overflow status is also returned by the <u>**Echo (X) command**</u>- see **S** and *E* flags).

As a result of **Close Connection instruction** execution <u>UDP data "connections"</u> are simply discarded. <u>TCP data connections</u> are properly shut down (using FIN-ACK-FIN-ACK sequence).

**Close Connection instruction** can be used at any time, even if the data connection is already closed and if the data connection was not established by the DS itself (i.e. it was a passive open).

OK (A) reply code is returned if command is accepted. This does not mean that the

connection has been shut down already, only that the DS has accepted the command. Actual connection status can be verified at any time using the **Echo (X) command** (see *c* flag).

Another instruction- **Abort Connection (CA)**- can be used to abort the TCP connection (using the RST packet). For UDP data "connections" there is no difference between the **Close Connection instruction** and the **Abort Connection (CA) instruction**.

### Abort Connection (CA) instruction

Description	(see	instruction	description	format	info	<u>here</u> )	1

Function:	Makes the DS abort the data connection with the network host, reset buffer overflow flags
Parameter (P) cmd format:	PCA
Possible <u>replies</u> :	Α
<b>Relevance conditions:</b>	
Compatibility with 2.5x:	Newly implemented instruction
See also:	Ethernet port and network communications, Establish Connection (CE) instruction.

### **Details**

**Abort Connection instruction** makes the DS end current data connection (if existed) and also resets routing buffers overflow flags (overflows are displayed by the <u>status LEDs</u>, overflow status also returned by the <u>Echo (X) command</u>- see **S** and **E** flags).

As a result of **Abort Connection instruction** execution <u>UDP data "connections"</u> are simply discarded. <u>TCP data connections</u> are reset (using RST packet).

**Abort Connection instruction** can be used at any time, even if the data connection is already closed and if the data connection was not established by the DS itself (i.e. it was a passive open).

**OK (A) reply code** is returned if command is accepted. This does not mean that the connection has been reset already, only that the DS has accepted the command. Actual connection status can be verified at any time using the **Echo (X) command** (see *c* flag).

Another instruction- <u>Close Connection (CC)</u>- can be used to properly shut down the TCP connection (using the FIN-ACK-FIN-ACK sequence). For UDP data "connections" there is no difference between the **Abort Connection instruction** and the <u>Close Connection (CC) instruction</u>.

### **Firmware revision history**

This topic briefly describes application firmware genesis from V2.21 (considered to be the first "really useful" firmware version) and up until current official version. This information is provided for your reference only; Tibbo is not obliged to elaborate on or explain detailed meaning of any item listed below.

### Version 2.21 (original "base" version)

- New: accept TCP "reconnects" from same IP but different port. Now, when TCP connection is already established and new connection attempt is made from the same IP the old connection will be "forgotten" and the new one will be accepted. More on this <u>here</u>.
- Adjustment: now firmware recognizes that when UDP packet arrives with its checksum field set to zero this means that checksum is not set. Before such packet would have been rejected and now it will be accepted
- Bug fix: related to the TCP connection termination procedure

### At this point Version 2.22 has been released

- New: UDP broadcast storm protection. Now, under heavy load conditions the DS selectively ignores broadcast messages thus making room for processing "useful" UDP packets
- New: Parity (PR) Setting gets 3 (Mark) and 4 (Space) parity options
- Adjustment: TCP packet retransmission algorithm has been improved
- Bug fix: several small things related to the data transmission with UDP/IP

### At this point Version 2.50 has been released

- Adjustment: on startup verify and correct <u>IP-address (IP)</u> and <u>MAC-address (FE)</u> if they are invalid. This makes sure that the DS will always be visible at least on a local network segment
- New: make <u>Version (V) Command</u> return "+N" if the <u>NetLoader</u> is present

### At this point Version 2.52 has been released

• Serious bug fix: found that initialization routine for the network controller inside the DS was wrong. This caused the network interface of the DS to not be properly initialized. In practice, this looked like sporadic "disappearance" of the DS from the network

### At this point Version 2.53 has been released

- New: <u>Connection Mode (CM) setting</u> has been added (only with options 0 and 1)
- Adjustment: multiple small improvements in TCP/IP stack, data routing
- New: inband command processing
- New: <u>error mode</u> added- now it is possible to setup the DS through the network even when one or several settings are invalid
- New: Echo (X) command extented to return status info
- New: Logout (O) command to exit programming mode without rebooting
- New: network programming source tracking. For example, in <u>out-of-band</u> UDP programming make sure that all subsequent commands after login come from the same IP
- New: serial-side parameters and instructions (modem commands)
- New: automatic login timeout for network programming
- New: Buzz (B) command
- New: Status (U) command
- New: <u>routing buffer</u> overrun tracking, special pattern that reflects overruns
- New: sequence numbers in <u>out-of-band</u> UDP commands (for "gang" command

execution)

- New: serial-side parameters and instructions (modem commands)
- New: <u>escape sequence</u> change: "silence gap" is now required before each escape character
- Bug fixes: several small issues related to serial commands
- New: selection of particular device in the <u>broadcast out-of-band</u> mode using <u>Select In Broadcast Mode (W) command</u>
- New: <u>DHCP</u> support
- New: quick initialization
- Adjustment: Echo (X) command reply changed and extended
- New: Data Login (DL) setting and command-phase programming
- New: processing of broadcast UDP data packets and Broadcast UDP (BU) setting
- Adjustment: decrease total number of start and stop characters- now can only have one of each
- Adjustment: Status (U) command reply changed and extented
- New: Add Link Server support
- New: <u>Notification (J) messages</u>, <u>Notification Destination (ND) setting</u>, <u>Notification Bitmask (NB) setting</u>
- New: DTR Mode (DT) setting

### At this point Version 3.00-BETA has been released

- Bug fixes: several minor adjustments in <u>DHCP</u> implementation
- New: additional escape sequence, extended Soft Entry (SE) setting
- New: accept out-of-band UDP commands on port 32767 also
- New: extented <u>Connection Mode (CM) setting</u>- added options 2 (on command) and 3 (on command or DSR=HIGH)
- Adjustment: many small fixes and improvements in the TCP/IP protocol stack
- New: processing of profiles (see "define your own default setting values")
- New: add ability to send data UDP packets as broadcasts (when <u>Destination IP-address (DI) setting</u> is 255.255.255)
- New: optional password protection for on-the-fly commands (<u>On-the-fly Password (OP) setting</u>)

#### At this point Version 3.12-BETA has been released

- Bug fix: several small fixes related to inband command processing
- Bug fix: several small fixes in <u>DHCP</u> implementation
- Improvement: adjusted TCP/IP protocol stack (several small issues)

### At this point Version 3.13-BETA has been released

- Bug fix: several small fixes in TCP/IP protocol stack, related to UDP communications
- Bug fix: related to remote control of RTS/CTS lines

#### At this point Version 3.14 has been released [latest documented version]

- Bug fix: several small issues related to Link Server communications
- New: added support for <u>dDNS</u> (not thoroughly documented yet)
- Adjustment: now Ethernet-to-serial buffer is not cleared when data connection is closed
- Adjustment: in <u>DHCP</u> now process "name field" so the DS also supplies its name to the DHCP server.

### At this point Version 3.15 has been released [latest published version]

### NetLoader (for network firmware upgrades, V1.10)

The NetLoader is a separate firmware component that facilitated <u>application firmware</u> upgrades over the network in the following devices: EM100-03, DS100R-03, DS100B-00. Without the NetLoader the only way to upgrade the application firmware of these devices would be through the serial port. Serial upgrades are made possible by the <u>Monitor</u>, which is a "fixed" component that is always present.

The NetLoader is not used in newer EM202-00 device(s). The firmware of these devices has the ability to self-upgrade itself, so NetLoader is not required.

From the Monitor's point of view the NetLoader is just another application firmware. Therefore, the NetLoader can be loaded into the DS through the serial port of the DS. The NetLoader is written in such a way that it can coexist with an actual <u>application firmware</u> so both can be present in the FLASH memory of the DS at the same time.

To facilitate smooth interaction between the application firmware and the NetLoader the following provisions are made:

- The application firmware can verify the presence of the NetLoader and "jump" (pass control) to the NetLoader when needed. This way the application firmware can start its "self-upgrade".
- The NetLoader can receive new firmware file from the network host over the network, save this file into the FLASH memory of the DS, verify the presence of and a validity of the application firmware and "jump" (pass control) to this firmware.

To the User the above looks like a fully automatic self-upgrade of the application firmware.

### **Status LED signals**

Status LED signaling of the NetLoader is very simple. When the NetLoader is entered the Green Status LED is switched on. The LED remains on at all times except when the data block is being programmed into the FLASH memory. The Green Status LED is off for the duration of the data block programming. Visually this makes the Green Status LED blink during the firmware file upload into the DS.

### MAC- and IP-address under the NetLoader

When the NetLoader is started it attempts to read out the values of the <u>IP-</u> address (IP) setting and <u>MAC-address (FE) setting</u> used by the <u>application firmware</u>. If the readout is successful the NetLoader uses current values of these settings and this means that the DS continues running under the same IP and MAC that was just used by the application firmware.

Although all efforts have been taken to make sure that the DS continues running under the NetLoader using the same IP- and MAC-address there are few cases when the NetLoader may not be able to read out one or both of the above settings successfully (for example, when the data in the EEPROM memory that keeps setting values was corrupted).

### The following happens in this situation:

- When the NetLoader is unable to read out the **IP-address (IP) setting** it assumes a default IP-address of 127.0.0.1.
- When the NetLoader is unable to read out the <u>MAC-address (FE) setting</u> it assumes a default MAC-address of 0.1.2.3.4.5.

### **NetLoader communications**

Communications with the NetLoader is effected by sending programming commands as UDP datagrams to port 65535 of the DS. For each command the NetLoader sends a reply, also in the form of a UDP datagram. Reply to a particular command is always sent to the IP-address and the port number from which this command was received.

Because each command and reply is sent in its own UDP datagram no additional encapsulation is necessary.

### All NetLoader commands have the following format:

C.C. Optional parameter(s)

- **C.C.** is the command code. Command code always consists of a single ASCII character. All available commands and their codes are listed in the command table at <u>available commands</u>.
- **Optional parameter(s)** field contains necessary data if required by the command.

### All NetLoader replies have the following format:

R.C. Optional data

- **R.C.** is the reply code. Reply codes always consist of a single ASCII character and inform the sender of the command about the result of command execution.
  - **Optional Data** field contains necessary data (if any).

**Example:** here is a sample exchange between the network host and the DS running NetLoader. Each line represents the data in a separate UDP datagram.

Host-->DS(NetLoader): V DS(NetLoader)-->Host: A<NV1.10Netloader>

This method of exchanging commands and replies is exactly the same as the one used by the <u>application firmware</u> of the DS where it is called <u>out-of-</u> <u>band (UDP) programming</u>. UDP communications with the application firmware and the

_

155

NetLoader are the same except for the following small differences:

- Latest versions of the application firmware accept UDP commands on two ports-65535 and 32767. The NetLoader can only accept UDP commands on port 32767.
- To speed up command execution the application firmware accepts multiple UDP commands (this is based on using additional <u>command ID field</u>). The NetLoader doesn't supports this feature and all commands should be sent strictly one-by-one i.e. the network host should not intentionally send the next command without first receiving (waiting for) a reply to the previous command.

Except for the above two differences UDP communications with the NetLoader is the same as UDP communications with the application firmware. Just like the application firmware, the NetLoader supports <u>broadcadt UDP programming</u>, which is initiated by the <u>Select In Broadcast Mode (W) command</u>. There are other commands that have similar or identical "parallel" commands in the application firmware-<u>Echo (X) command</u>, <u>Verify and Start Firmware (E) command</u>, <u>Get Firmware Version (V) command</u>.

UDP programming is called (in the <u>Application Firmware Manual</u>) <u>out-of-</u> <u>band (UDP) programming</u> because there is also <u>inband (TCP) programming</u> that relies on TCP communications with the DS. Because of size constraints the NetLoader doesn't support TCP communications and the only available method of exchanging commands and replies is the one based on UDP commands.

### How the NetLoader is started

### The NetLoader is started in one of the two ways:

- If the <u>application firmware</u> is not loaded or corrupted the <u>Monitor</u> starts the NetLoader automatically when the DS is powered up (see <u>DS startup procedure</u>).
- When the application firmware is running remote host can make the application firmware jump (pass control) to the NetLoader by sending a Jump To Netloader (N) command.

In both cases the presence and validity of the NetLoader is verified before the control is passed to it.

The network host can verify whether the application firmware or the NetLoader is running by sending the **Echo (X) command [application firmware/ NetLoader]**. This command is supported by both firmware components but returns different replies. Specifically, there is an *m* (mode) flag that is set to 'N' by the application firmware but to 'L' by the NetLoader.

### Firmware upload procedure

# The network host should use the following procedure in order to upload an <u>application firmware</u> file into the DS:

- First, it is necessary to verify if the NetLoader is already running. This is done by sending the **Echo (X) command [application firmware/ NetLoader]** and checking the *m* flag in the reply data (see <u>how the NetLoader is started</u>). If the NetLoader is not started yet then the following steps should be taken:
  - The network host should login (if not logged in yet) using the Login (L) command;
  - Next, the network host should send <u>Jump To Netloader (N) command</u>. This

will start the NetLoader

- It is better to verify that the NetLoader is, indeed, running, by sending another **Echo (X) command** and checking the status of the **m** flag.
- Once the NetLoader is started the network host should send **Start Over (Q) command** to reset the data upload process.
- Then, the network host should issue as many **Data Block (D) commands** as necessary to upload the entire firmware file.
- When the upload is completed the host should send the <u>Verify and Start Firmware (E) command</u> to start the newly loaded firmware. The host should wait about 2 seconds (to allow the firmware to start) before proceeding to the next step.
- As the last step of the procedure it is better to issue the **Echo (X) command** again to verify that the new firmware is, indeed, running.

The above procedure is, of course, simplified, as it does not take into account all kind of possible errors that can potentially arise practically on every step of the firmware upload. The "entity" performing the upgrade should carefully analyse the result of every step in the above procedure and correctly react to different error codes returned by the DS.

Also, the procedure above doesn't show the use of the <u>Select In Broadcast Mode (W) command</u> that provides a way to program the DS whose IP-address is unreachable (see <u>broadcadt UDP programming</u> for explanation). The NetLoader also support a similar command (see <u>Select In Broadcast Mode (W) command</u>). Important point to realize is that since the NetLoader is a separate firmware component the **Select In Broadcast Mode (W) command** should be used twice:

- The W command should be used to first time before sending the Login (L) command and Jump To Netloader (N) command. This will preselect the DS for broadcast access while still in the application firmware.*
- The W command should be used the second time when the NetLoader starts, before starting the file upload (<u>Start Over (Q) command</u>, <u>Data Block (D) commands</u>, and <u>Verify and Start Firmware (E) command</u>)*.
- * These commands should, of course, be sent as UDP broadcasts in this case.

### **Available commands**

Table below lists all available NetLoader commands:

C.C.	В	Description		
X	+	Echo command		
W	+	Select In Broadcast Mode command		
S		Start Over command		
D		Data Block command		
Е		Verify And Start Firmware command		
V		<b>Get Firmware Version command</b>		

### Notes:

• C.C.- command codes.

**B**- '+' in this column indicates that command can be issued in the broadcast mode (when sent through the network) without the need to pre-select a particular DS using **Select In Broadcast Mode (W) command** first.

### **Command description format**

All commands in this section are described using the following format:			
Function:	Command function in brief		
Command format:	Shows command syntax		
Possible replies:	Lists all possible reply status codes that can be returned in response to this command		
See also:	Additional relevant links		

### **Details**

Additional information about the command.

### Echo (X) command

Description (see command description format info here)			
Function:	Returns NetLoader status		
Command format:	x		
Possible replies:	<pre>Annn.nnn.nnn.nnn.nnn/ppppp/m, where nnn.nnn.nnn.nnn.nnn- MAC-address of the DS; ppppp- fixed at "65535"; m- fixed to 'L' (means that the NetLoader, not the application firmware is running).</pre>		
See also:	How the NetLoader is started, <b>Echo (X) command</b> in the application firmware		

### **Details**

The primary use of the **Echo command** is to auto-discover Device Servers on the network and to verify that the NetLoader is running. When the network host sends this command in the broadcast mode, it collects the replies from all locally attached Device Servers (hence, the name of the command). Reply from each DS contains all necessary information (MAC-address, etc.) that is needed to continue communicating with each specific DS in a non-broadcast mode. This command has its counterpart in the <u>application firmware</u> (see <u>Echo (X) command</u>).

Information returned by the Echo command contains the following data:

- MAC-address is the most important field that can be used to uniquely identify each DS! Besides, the MAC-address is used (and, therefore, must be known in advance) as a reference to the particular DS in the <u>Select In Broadcast Mode (W) command</u>.
- **Data port number** field is fixed at 65535. The NetLoader doesn't use any data ports so this field is provided for format compatibility with the **Echo (X) command** in the <u>application firmware</u>.
- *m* flag always returns 'L'. This is meant to indicate that the NetLoader is running.

In contrast, when the <u>application firmware</u> is running this flag shows 'N'.

* This is because each DS, like any other Ethernet device, has a unique MACaddress preset during the production.

### Select In Broadcast Mode (W) command

**Description** (see command description format info here)

Function:	Selects the DS as the target in <u>broadcast</u> communications
Command format:	<b>Ammm.mmm.mmm.mmm.mmm</b> , where <b>mmm.mmm.mmm.mmm.mmm</b> - MAC- address of the target DS
Possible replies:	<b>Avvv</b> , where <b>vvv</b> is the version string
See also:	Firmware upload procedure, Broadcast out-of- band (UDP) programming, Select In Broadcast Mode (W) command of the application firmware

#### <u>Details</u>

**Select In Broadcast Mode command** has exactly the same function as the **Select In Broadcast Mode (W) command** of the **application firmware**.

This command is used to pre-select a certain DS for subsequent firmware upload. Only few NetLoader commands (such as **Echo (X)**) are accepted when sent in broadcast UDP datagrams. All other commands are only accepted if they address a specific DS. Such specific addressing normally involves sending UDP datagrams with the IP-address of the targeted DS as the destination (i.e. non-broadcast datagrams). This requires the IP-address of the DS to be reachable.

**Select In Broadcast Mode command** provides a way around this. Target DS, referenced by its MAC-address, is first pre-selected using this command. After that, all broadcast commands that are normally ignored when sent as broadcasts, are not ignored and processed by this pre-selected DS.

When **Select In Broadcast Mode command** is issued all devices whose MACaddresses do not match the target MAC-address supplied in the command body deselect themselves. This means that to switch onto working with another DS in the broadcast mode you need to send the new **Select In Broadcast Mode command** with the new target MAC-address. This will pre-select a different DS while at the same time de-selecting the DS that was selected before. To de-select all DS on the network send **Select In Broadcast Mode command** with no MAC-address field.

This command only influences which DS responds when it is addressed using broadcast UDP commands. Command has no influence over commands sent using normal IP addressing.

The only possible reply to this command is **OK (A)**. It is issued by the DS that has recognised its MAC-address in the command body. If no DS on the local network recognizes its MAC then there will be no reply received to this command.

**Select In Broadcast Mode command** should be issued (when necessary) right after the NetLoader is started as all subsequent commands, such as **Start Over (Q)**, **Data Block (D)**, and **Verify And Start Firmware (E)** won't work when send as broadcasts without prior pre-selection.

It is important to understand that **W command** should be used within the NetLoader even if it has already been used in the application firmware before the NetLoader was started. This is because the application firmware and the NetLoader are separate firmware components and the pre-selection made in the application firmware will not be "passed" to the NetLoader.

### Start Over (Q) command

**Description** (see command description format info here)

Function:	Initializes (reset) firmware file upload
Command format:	Q
Possible replies:	Α
See also:	Firmware upload procedure

### <u>Details</u>

**Start Over command** is used to reset the firmware upload. This resents internal data block counter of the NetLoader and the first **Data Block (D) command** will be expected to carry data block 0.

This command is recommended to be used after the NetLoader is started to make sure that the upload process is properly initialized.

### Data Block (D) command

**Description** (see command description format info here)

Function:	Supplies one 128-byte block of firmware file to the NetLoader
Command format:	<b>Dnnddd</b> , where <b>nn</b> - block number (binary format, two bytes, high byte first); <b>ddd</b> - 128 bytes of file data.
Possible replies:	<b>Ann</b> , <b>Cnn</b> , <b>Snn</b> , <b>Onn</b> , <b>Inn</b> , <b>Fnn</b> , where <b>nn</b> is the number of the next expected data block (binary format, two bytes, high byte first)
See also:	Firmware upload procedure

### **Details**

**Data Block command** carries a 128-byte block of application firmware file. Entire application firmware file is to be uploaded using multiple Data Block commands and the NetLoader expects that the firmware file size will consist of an integer number of 128-byte blocks.

The data blocks must be sent in consecutive order i.e. the first block (block 0) must carry first 128 bytes of the firmware file, block 1 should supply next 128 bytes, etc. Because NetLoader communications is based on UDP commands and UDP packets can get lost each data block is sent with its own block number. This way the NetLoader can make sure that all data blocks received are in sequence.

The **nn** field in the command body carries the block number. The block number is supplied in a binary form. Since block numbers can exceed 255 two bytes are

needed for the block number. High byte goes first so, for example, to denote block #300 the first two bytes should be 01H 2CH. Block numbers start from 0.

Following two block number bytes are 128 bytes of firmware file data. Again, the data is supplied in a binary form, that is, a part of the firmware file is "cut out" and attached to the command.

Like all other commands, the **Data Block command** returns an appropriate reply status code. The difference is that all reply status codes are followed by the number of the next expected data block. Next data block is present even in replies indicating that the command was not processed successfully. In this case the next expected data block simply remains the same (is not incremented). If the command was completed successfully the *nn* field in the reply will "point at" the next data block to be sent. For example, if the *nn* field in the command was 300 (01H 2CH) and the command was completed successfully the *reply* will have the *nn* field of 301 (01H 2DH). If command failed the *nn* field in the reply will still be at 300 (01H 2DH).

**OK (A) reply status code** is returned if the data block was programmed successfully *or* if the Data Block command has carried a data block that has already been programmed. That is, if the NetLoader expects the block number to be 10 and the network host supplies block 5 the NetLoader will reply with **A code** and discard this data block.

**Error (C) reply status code** is returned if the total length of *nn* and *dd...d* fields in the command is not 130 bytes.

**Sequence Error (S) reply code** is returned if the NetLoader receives the data block with *nn* field greater than the one expected (for example, block 7 when block 6 was expected).

**Out-of-range (O) reply code** is returned if the total size of the firmware file received by the NetLoader exceeds the size detected in the beginning of the file upload. Total file size information is contained in the firmware file itself (in block 1). For example, if the file size was expected to be 40064 bytes then the total number of data blocks had to be 40064/128=313. Therefore, the range of expected data block numbers is 0...312. The NetLoader will return the **O code** if any data block with the number greater than 312 is received.

**Invalid Data (I) reply code** is retuned if the NetLoader detects that the file data sent by the network host is invalid. This can only be generated for data blocks 0 and 1. These blocks contain certain "service" information (such as the total file size- see above) that the NetLoader checks to make sure that the firmware file being uploaded is acceptable.

**Failed (F) reply code** is returned if the NetLoader fails to program the data block into the FLASH memory of the DS.

We recommend that the network host sends the **<u>Start Over (Q) command</u>** before beginning file upload with the **Data Block commands**.

### Verify And Start Firmware (E) command

Description (see command description format info here)			
Function:	Verifies and starts the application firmware		
Command format:	E		
Possible replies:	I		
See also:	Firmware upload procedure, Reboot (E) command		

### **Details**

**Verify And Start Firmware command** instructs the NetLoader to verify the checksum of the application firmware and, if OK, to start application firmware execution. This command is similar to the **Reboot (E) command** of the <u>application firmware</u> in that it ends the execution of the current firmware (NetLoader).

**Invalid (I) reply code** is returned if the checksum is wrong and the NetLoader continues running. No reply is returned if the checksup is OK, the NetLoader simply passes control to the application firmware.

This command should be used as the last step of the firmware upload through the network.

### Get Firmware Version (V) command

Description (see command description format info here)

Function:	Returns the version of this NetLoader
Command format:	V
Possible replies:	<b>Avvv</b> , where <b>vvv</b> is the version string
See also:	Get Firmware Version (V) command in the application firmware

### **Details**

**Get Firmware Version command** returns the version of this NetLoader. This command is similar to the **<u>Get Firmware Version (V) command</u>** of the application firmware.

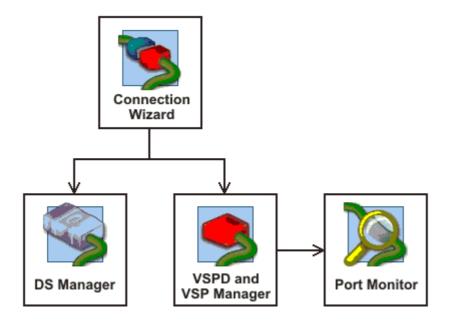
The version string is always encapsulated in '<' and '>', begins with the version number in **NV***x*.*xx* format, and possibly contains a small comment after a space. "N" in front stands for "NetLoader".

Example:

-->DS: V DS-->: A<NV1.10 Netloader>

### **Software Manuals**

This part of the documentation describes all PC software supplied by Tibbo.


### At the moment, two software packages are available:

- <u>Device Server Toolkit (DST) software for Windows</u>, currently in its Release3.5 version.
- <u>Virtual Serial Port Driver for LINUX (VSPDL)</u>, current version is 1.0.

163

# Device Server Toolkit (DST) Software for Windows (Release 3.5)

**Tibbo Device Server Toolkit** (*DST*) for *Windows* is supplied free of charge with all <u>Device Servers</u> manufactured by Tibbo. The *DST* runs under all versions of *Windows** starting from *Windows 98*. At the time of writing this includes *Windows 98*, *Me*, *NT*(*SP4*), 2000, *XP*, 2003 (server).



### The Device Server Toolkit includes five components:

- <u>Device Server Manager</u> (*DS Manager*) is used to locate, setup, manage, monitor, and upgrade Tibbo <u>Device Servers</u>. The *DS Manager* works with all Tibbo Device Servers, regardless of their model number and internal firmware version.
- <u>Virtual Serial Port Driver</u>* (*VSPD*) powers Virtual Serial Ports (*VSPs*) that are used to network-enable legacy serial systems. To any *Windows* application the *VSP* "looks and feels" just like any standard COM port, while in reality the *VSP* is transparently routing the data between the application and the serial port of the Device Server.
- **Virtual Serial Port Manager** (*VSP Manager*) is used to add, delete, and setup *VSPs*. The *VSPD* and the *VSP Manager* are different entities (one is a *driver*, another one- a *setup utility*). This *Manual* offers combined description of the two and all *VSPD* features are explained "through" the *VSP Manager* and its dialogs.
- **Port Monitor** is a supplementary program that logs the activity of *VSPs* on your system. Every action of the *VSP* (port opening, port closing, establishing connection with a particular Device Server, etc.) is recorded by the *Port Monitor*. This makes the *Monitor* an indispensable debugging tool that can be used to pinpoint *VSP*-related problems.
- <u>Connection Wizard</u> assists you in setting up typical data links involving Tibbo Device Servers and *Virtual Serial Ports*. Although the description of the *Connection Wizard* comes last in this *Manual* this is the program you should probably try out *first*. Chances are, this will be *the only* program of the *DST* you'll ever use!
- * Windows is a registered trademark of Microsoft Corporation.
- * Also known as "COM redirector".


### **DS Manager**



**Device Server Manager** (*DS Manager*) is a part of the <u>Device Server Toolkit</u>.

The *DS Manager* is used to locate, setup, manage, monitor, and upgrade Tibbo Device Servers ("DS").

Shown below is the screenshot of the *DS Manager's main window*. Click on the picture area to jump to the related topic or select the topic from the list under the screenshot.



### The main window has the following areas and controls:

- <u>Access mode drop-down box</u> provides a selection of three different access modes (auto-discovery, address book, and <u>COM</u>). Access modes define how the *DS Manager* locates and accesses the Device Servers.
- **Device list**. The data shown in the *device list* depends on the selected <u>access mode</u>. The <u>status icons</u> displayed in the <u>auto-discovery</u> and <u>address book</u> access modes reflect the current state of each DS in the list.
- **Status area.** When you select a different <u>access mode</u> this area displays a brief mode introduction. Single-clicking on a particular DS in the *device list* displays extended information about the current status of this DS (<u>auto-discovery</u> and <u>address book</u> access modes only).
- Refresh button is used to refresh the *device list* (<u>auto-discovery</u> and <u>address book</u> access modes only)

- Actions of the following *function buttons* apply to a single DS (or COM port to which this DS is connected) selected in the *device list*:
  - <u>Settings button</u> opens the settings dialog that allows you to view and edit the settings of a particular DS;
  - **Upgrade button** launches the upgrade of the internal DS firmware;
  - <u>Initialize button</u> is used to initialize the settings of the DS to their default values;
  - **<u>Routing Status button</u>** (<u>auto-discovery</u> and <u>address book</u> access modes only) opens the *routing status dialog* that displays additional information on the current DS state (data connection state, amount of data in the routing buffers, serial port setup, etc.);
  - **<u>Buzz button</u>** (auto-discovery and address book access modes only) causes the status LEDs of the DS to "play" a fast-blinking pattern. This can be used to match a particular entry in the *device list* to an actual physical device;
  - <u>Change IP button</u> (<u>auto-discovery</u> mode only) is used to assign new IPaddress to the DS over the network (using MAC-address of the DS as a reference).
- Add, Remove, and Edit buttons are used to <u>edit the address book</u> (address book is a manually created list of Device Servers in the <u>address book</u> access mode). *Add button* is visible both in the <u>auto-discovery</u> and <u>address book</u> access modes, while *Remove* and *Edit* buttons are only visible in the <u>address book</u> access mode.

### **DS** status icons

*Status field* of the *device list* (available in the <u>auto-discovery</u> and <u>address book</u> access modes) displays a **status icon** for each DS. The status icon reflects current DS state and is updated each time the *Refresh button* is pressed. Listed below are all DS states that may be reflected in the *device list*.

The following two states can only be displayed in the address book mode:

- --- When no icon is displayed for an address book entry then this means that there was no response to the PING sent by the *DS Manager*. This indicates that there is no device whatsoever at the IP-address specified by the address book entry. For more information see <u>troubleshooting (address book mode)</u>.
- **Unknown device.** This icon means that there was a response to the PING sent by the *DS Manager* (which proves that there is at least *some* device at the specified IP-address) but that the *DS Manager* cannot make sure that this is really a Tibbo Device Server. For more information see troubleshooting (address book mode).

**Note.** The reason why the above two states can only be encountered in the <u>address book access mode</u> is because in the <u>auto-discovery mode</u> the device list only displays Tibbo Device Servers that have actually responded to the refresh.

All remaining icons may be displayed both in the  $\underline{auto-discovery}$  and  $\underline{address\ book}$  access modes.

### The status icon consists of three parts:

- **The central part** depicts the DS and reflects its general status and well-being:
- No status info available. The DS is running old firmware (2.xx or older) and the status information cannot be obtained remotely.

165

- **Normal state.** The DS is online and appears to function properly.
- **Error mode.** The DS is running in the <u>error mode</u> and requires <u>initialization</u>;
- IP-address not obtained. The DS is online but hasn't yet obtained its IPaddress from the DHCP server (when the <u>DHCP (DH) setting</u> is 1 (enabled)). In this state the DS is not performing its data routing function. If the DS is also in the <u>error mode</u> (see above) at the same time then it is the <u>error mode</u> status that will be shown by the icon;
- Firmware upload mode. The DS is in the firmware upload mode and is ready to accept new firmware file. If the DS enters this mode right after the powerup then this means that no firmware is loaded or that the firmware is corrupted.
- Left part of the icon shows current data connection status:
- --- Idle. No data connection is established, the DS is idle (so no icon is displayed);
- ARP. The DS is sending ARP requests in order to find the MAC-address of the destination network host (or gateway) before attempting to establish a data connection;
- Opening. <u>TCP data connection</u> is being established. This icon cannot be displayed for the UDP transport protocol since there is no connection establishment phase for <u>UDP data "connections"</u>;
- Established (or being closed), no overrun. <u>TCP data connection</u> or UDP <u>UDP data "connection"</u> is established or TCP connection is being closed (there is not connection closing phase for UDP). <u>Routing buffer</u> overflow is not detected (within current data connection).
- Established (or being closed), overrun detected. Same as the above but routing buffer (Ethernet-to-serial and/or serial-to-Ethernet) overflow has been detected.
- **Reset.** <u>TCP data connection</u> has been reset by the network host (not the DS itself). This icon cannot be displayed for <u>UDP data "connections"</u>.
- Right part of the icon displays current programming status:
- --- No programming. The serial port of the DS is not in the serial programming mode and no <u>network programming session</u>* is opened;
- Programming in progress. Either the serial port of the DS is in the serial programming mode or <u>network programming session</u>* has been opened.

Central, left, and right icon parts described above are combined into a single status icon.

**Example:** the following "combination" icon means that the DS is running in the error mode, data connection is currently established (but no overrun has been detected), and some form of programming (either serial or network) is in progress:

### **20+***

In addition to different states described above the whole status icon can be displayed in full color or grayed (see sample icons below). This only applies to local Device Servers and the <u>auto-discovery mode</u>).

**Full color.** This means that the *DS Manager* can communicate with the DS using "normal" IP addressing.

Grayed**. When the status icon is grayed then this means that the *DS Manager* can see the DS but cannot communicate with the DS using normal IP-addressing. Full details on what this means are provided in the following topics: <u>broadcast access</u>, <u>troubleshooting (autodiscovery mode)</u>.

Additional (and more full) status information for the selected DS (i.e. the DS whose line is highlighted in the *device list*) is displayed in the *status area* below the *device list*. For example, while the status icon may show that some sort of programming is in progress the *status area* message will detail that the "UDP network programming session is in progress". Each status message has a clickable link that opens a corresponding help topic (all such topics can be found at <u>DS status messages</u>).

### **Programmer's info:**

The *DS Manager* collects DS status information (and detects DS presence) using the **Echo (X) command**.

* More info on network programming sessions can be found in the following topics: <u>authentication</u>, <u>programming priorities</u>.

** Actually, "watered down" as colors can still be distinguished.

### Access modes

The *DS Manager* has three fundamental modes of operation, called *access modes*, that define how it finds, connects to and works with Device Servers. Desired access mode is selected from the *access mode drop-down box*, located at the top of the *main window* of the *DS Manager* (see figure below):

Local Device Servers (auto-discovery by broadcast)
Local Device Servers (auto-discovery by broadcast)
Device Servers from the Address Book
Device Servers attached to the COM port

### Available access modes are:

- Local Device Servers (auto-discovery by broadcast). In this mode the *DS Manager* automatically finds all local Device Servers* and displays them in the *device list* (*remote* Device Servers located behind one or several routers cannot be auto-discovered). Device list is updated each time *Refresh button* is pressed, only devices that have actually responded to the refresh appear in the list.
- Device Servers from the Address Book. In this mode the list of available

Device Servers- called "the address book"- is created manually by the User and the *DS Manager* does not attempt to locate Device Servers automatically. Device list displays all entries from the address book at all times, even if corresponding Device Servers are not online. Actual availability of each Device Server is reflected in the status icon for this DS. In this mode the *DS Manager* can communicate both with local and remote Device Servers (i.e. located behind the routers on different network segments)**. Since local Device Servers can easily be accessed using the <u>auto-discovery mode</u> the primary use of the address book mode is to access remote Device Servers.

• **Device Servers attached to the COM port (of the PC).** In this mode the *DS Manager* communicates with the DS connected (by its serial port) to the COM port of the PC. Device list displays all available physical COM ports of the PC and the *refresh button* is hidden. Since the DS is accessed through its serial port it must be in the <u>serial programming mode</u> for this access method to work. Therefore, the User must press the <u>setup button</u>*** to make the DS enter the serial programming mode before the *DS Manager* will be able to access the DS.

### Note:

### *******

Status LEDs of the DS are playing a *serial programming mode pattern* (shown on the left) when the serial port of the DS is in the <u>serial programming mode</u> (click <u>here</u> to see all available patterns).

* I.e. the Device Servers located on the same network segment. The definition of the network segment implies that there are only network hubs (and no routers, bridges, firewalls, etc.) between the PC and all other devices on the segment.

** Ability to access remote Device Servers also depends on the configuration of the network, routers, and Device Servers.

*** On EM100, EM120, EM200, EM202- pull the <u>MD line</u> LOW for at least 100ms.

### Auto-discovery access mode

Can't find your Device Server in the *device list* of the auto-discovery mode? The status icon is grayed indicating that the IP-address of this DS is "unreachable"? See <u>troubleshooting</u>!

**Auto-discovery access mode** is selected by choosing "Local Device Servers (Auto-discovery by broadcast)" from the *access mode drop-down box*, located at the top of the *DS Manager's main window*.

In this mode the *DS Manager* finds all local Device Servers* automatically. Device Servers located behind the routers (remote Device Servers) cannot be autodiscovered by the *DS Manager* because broadcast UDP datagrams used to find the Device Servers on the network cannot pass through routers. Address book access mode should be used to work with remote Device Servers.

All discovered Device Servers are displayed in the *device list*. Each DS is uniquely identified by its MAC-address which is different for every DS manufactured. The *device list* will correctly display all local Device Servers even if some of them have the same IP-address, as well as devices whose IP-address is unreachable. Correctly configured IP-address is *not required* for the *DS Manager* to be able to access local Device Servers in the auto-discovery mode (see <u>broadcast access</u> for more

information).

*Device list* is updated each time *Refresh button* is pressed. Only Device Servers that have replied to the *DS Manager's* request appear in the list, the *DS Manager* does not "remember" previous refresh results. Status area under the *device list* displays extended status information for the DS selected in the *list*.

Status	MAC	IP	Owner/Device n
00	0.2.3.4.17.69	192.168.100.249 (local)	
🛄 🐗	0.2.3.4.61.189	192.168.100.92 (local DHCP)	Tibbo/Test_dev
<b>(11)</b>	0.2.3.4.81.10	192.168.100.213 (local)	10. T
(0)	0.2.3.4.135.248	127.0.0.1 (local)	

### In the auto-discovery mode the *device list* has the following fields:

- **DS status icon**. See <u>DS status icons</u> for more information.
- **MAC-address** of the DS. It is the MAC, not the IP-address, that uniquely identifies each DS in the list.
- **IP-address** of the DS. Comment next to the IP-address shows that this device is local (same for all devices in the list since auto-discovery mode only shows local Device Servers). If the DS is running with DHCP enabled the note "DHCP" is also displayed next to the IP-address (as in line 2 of the screenshot above). As you can see from the screenshot, correct IP-address is not required for the DS to be discovered. IP-address in line 4 is invalid yet the *DS Manager* can "see" this DS as well.
- Owner name and device name fields displays the data from the <u>Owner Name (ON)</u> and <u>Device Name (DN)</u> settings of the DS. The purpose of these settings is to simplify distinguishing between the Device Servers in the *device list*.

Device list of the auto-discovery mode is sorted by MAC-address, then by IP-address.

### **Programmer's info:**

When the *Refresh button* is pressed the *DS Manager* sends out a broadcast **Echo (X) command**. This command reaches all local Device Servers, even the ones with unreachable IP-address. Devices shown in the *device list* are those that have replied to the broadcast

* I.e. the Device Servers located on the same network segment. The definition of the network segment implies that there are only network hubs (and no routers, bridges, firewalls, etc.) between the PC and all other devices on the segment.

### Broadcast access

In the <u>auto-discovery access mode</u> the *DS Manager* can detect and access all local Device Servers, even those whose IP-address is "unreachable" (incompatible with the network settings of the PC, conflicts with the same IP-address set on another Ethernet device, etc.).

Device Servers with unreachable IP-address are accessed using broadcast communications (broadcasts do not depend on the IP-address of the device in any way)*. The downside of this method is that broadcasts cannot pass through the routers so only local Device Servers can be accessed this way (hence, the method is only used in the <u>auto-discovery mode</u>).

Devices with unreachable IP-address are displayed in the *device list* with their status icon "grayed" (see sample icon on the left). For complete list of all icons please turn to <u>DS status icons</u>.

Note, that conditions that cause the IP-address of the DS to appear to be unreachable may be temporary. See <u>troubleshooting (auto-discovery mode)</u> for details.

### **Programmer's info:**

The *DS Manager* determines which Device Servers can be accessed using "normal" IP-addressing (and which- cannot) by performing the following procedure:

- When the *Refresh button* is pressed (in the <u>auto-discovery mode</u>) the *DS* Manager sends out a broadcast <u>Echo (X) command</u>. This command reaches all local Device Servers, even the ones with unreachable IP-address. Devices shown in the *device list* are those that have replied to the broadcast.
- Next, the *DS Manager* sends out non-broadcast **Echo (X) commands** directly addressing each DS in the *device list* (so as many commands are sent as there are devices detected in the previous step). If there is a reply to a command addressing a particular DS then the *DS Manager* considers the IP-address of this device to be reachable. Otherwise, the *DS Manager* marks this DS as having an unreachable IP-address and accesses it using broadcasts.

The ability to access and program Device Servers using broadcast communications is delivered through the use of the <u>Select In Broadcast Mode (W) command</u>. You can also read about how this works in the following topic: <u>Broadcast out-of-band commands</u>.

* Broadcast programming is not supported by Device Servers with the older firmware (earlier than V3.xx). Such Devices must be assigned a reachable IP-address before they can be accessed by the DS Manager.

### Troubleshooting (auto-discovery mode)

This topic provides a list of hints that can help you figure out why you cannot "find" your Device Server in the device list of the *DS Manager* or why the DS is shown as having an unreachable IP-address (status icon is "grayed"). The topic only covers

the <u>auto-discovery access mode</u>. See <u>troubleshooting (address book mode)</u> and <u>troubleshooting (COM mode)</u> for hints on other two access modes.

### Here is why you may not be able to see the DS in the *device list*:

- The DS may be switched off or not connected to the network*.
- The DS may not be on the local network segment. In the <u>auto-</u> <u>discovery access mode</u> the *DS Manager* can only "see" Device Servers on the same network segment as your PC (local Device Servers). Remote Device Servers located behind routers (firewalls, etc.) cannot be accessed. Use <u>address book access mode</u> to work with remote Device Servers.
- Firewall software on your PC may be preventing communications between the *DS Manager* and Device Servers. This communications relies on the <u>UDP/IP traffic to</u> <u>port 65535</u> of the DS. Make sure that your firewall software does not ban this traffic! Our experience shows that many Users are not aware of the firewall software installed on their own PCs! Some firewalls come as part of larger "protection" suites (anti-virus, anti-intrusion, etc. programs). Some operating systems, such as *Windows XP*, include the firewall software too.
- If your DS is running an older firmware (V2.xx) then it will not be accessible through the network and visible to the *DS Manager* in the following cases:



......

When the DS is in the <u>serial programming mode</u> (status LEDs of the DS "play" the pattern as shown on the left)**;

When the DS is in the <u>error mode</u> (status LEDs of the DS "play" the pattern as shown on the left)**.

This *does not* apply to the Device Servers running DS firmware V3.xx or higher. In this firware the DS is visible on the network at all times.

• If there are many devices shown in the *device list* the DS you are looking for may actually be in the list! A very useful <u>buzz feature</u> allows you to match *device list* entries to their actual physical Device Servers. Use this function and you will probably "find" your DS (<u>buzz feature</u> is only supported by DS firmware V3.xx or higher).

# Here is why the DS may be shown in the device list as having an unreachable IP-address:

- Because the IP-address of the DS is really unreachable. This means that it is outside of the IP-address range defined for the subnet to which your PC is connected. For example, if the IP-address of your PC is 192.168.100.30 and the netmask is 255.255.255.0 then your local subnet has the IP-address range from 192.168.100.1 to 192.168.100.254***. So, if you connect the DS to the local network segment and set its IP-address to 192.168.100.40 then the *DS Manager* will be able to access this DS. If you set the IP-address to 192.168.10.40 then your PC will decide that this IP-address is on some other subnet and will relate all communications (related to this IP) to the "default gateway". This means that network packets addressing this DS won't even be released into the network to which the DS is physically connected.
- Because the *DS Manager* has cached a different MAC-address for the IP-address currently assigned to the DS in question. This can happen if you connect different Device Servers one by one to the same network segment and then assign the same IP-address to each Device Server. This is often reported by our Users that want to pre-program or test several Device Servers. What happens here is that after the first DS is detected/accessed by the *DS Manager* the PC finds out the

MAC-address that corresponds to the IP-address of the DS****. If you quickly connect another DS in place of the first one and assign the same IP-address to it the PC won't bother to "resolve" the IP-address again and will attempt to communicate with the "cached" MAC-address instead. Since MACs are unique for each DS the *DS Manager* won't be able to communicate with the new DS using "normal" IP-addressing. This problem will be resolved automatically after IP-MAC mapping data kept by the PC expires (about 20 minutes later). If your task is to pre-program/test several Device Servers then you don't have to wait until this happens- the *DS Manager* automatically chooses <u>broadcast access</u> for Device Servers that (temporarily) cannot be addressed using their IP-address.

- Because the IP-address of the DS is the same as the IP-address of some other device on the network segment. The best way to find out if this is so is to switch the DS off and try to PING the IP-address in question. If you still get PING replies then this means there is some other network device that is using this IP!
- Because of the firewall software installed on your PC. We have seen cases when the *DS Manager* could discover the Device Servers (broadcast UDP communications to port 65535 were allowed) but could not address these devices using normal IP addressing (non-broadcast UDP communications to port 65535 were blocked). When this is the cause of the problem all of your devices will be seen in the *DS Manager* with grayed icons.

* Really sorry for this "hint"... it's just that this is the root cause of many problems!

** See <u>status LED signals</u> for the full list of all available patterns.

*** .0 and .255 are not allowed in principle.

**** MAC-address is an actual physical network address used by all Ethernet devices. When connecting to the target device with a specified IP-address the "connectee" first finds out what MAC-address corresponds to the targeted IPaddress. This way IP-addresses are mapped onto the MAC-addresses. This process is called "address resolution" and is performed using a special Address Resolution Protocol (ARP). Mapping information is memorized ("cached") by the PC and is remembered for about 20 minutes. The information is reused until it expires. This means that instead of using the ARP again the PC simply uses cached data instead.

### Address book access mode

Can't access your Device Server in the address book mode? The device list shows "no response" or "unknown device" status? See <u>troubleshooting</u>!

**Address book access mode** is selected by choosing "Device Servers from the address book" from the access mode drop-down box, located at the top of the *DS Manager's main window*.

In this mode the *DS Manager* displays a manually created list ("the address book") of Device Servers. Each entry in the list specifies the IP-address (and port number) at which the DS is (supposed to be) located or through which the DS can be accessed. The address book is edited using three buttons- <u>Add, Remove, and Edit</u>.

Address book mode allows the *DS Manager* to communicate both with *local* and *remote* Device Servers (i.e. located behind the routers)*. Since local Device Servers can easily be accessed using the <u>auto-discovery access mode</u> the primary use of the address book mode is to access remote Device Servers.

Modern routers offer a bewildering array of routing arrangements and security

(firewall) options. To adjust for all this complexity the address book mode provides a flexibility of defining access parameters separately for each entry in the list. This includes, apart from the IP-address, the <u>access method</u> and the access port number.

In the address book mode the *device list* always displays all entries from the address book (this is different from the <u>auto-discovery mode</u> which only shows online devices). Each time *Refresh button* is pressed the *DS Manager* verifies which Device Servers are online and reflects this by displaying an appropriate icon for each entry in the list. *Status area* under the *device list* displays extended status information for the DS selected in the *list*.

Status	IP	Access	Owner/Device name	Comment
00	192.168.100.213 (local)	UDP (65535)		Local DS
۱ 🗰	211.22.83.108	UDP (65535)	Tibbo/Test_dev	
	211.22.83.109	UDP (65535)		Remote device #2
8	211.22.83.110	UDP (65535)		Remote device #3
				I
•				)

#### In the address book mode the *device list* has the following fields:

- **DS status icon**. See <u>DS status icons</u> for more information. Since the address book consists of *addresses*, not *actual devices*, there is no guarantee that there is definitely a functioning DS at each specified location. On the sample screenshot above no device is found at location specified by line 3 (no status icon displayed) and unknown device (not a Tibbo Device Server) is found at location specified by line 4 (? is displayed).
- **IP-address** of the DS itself or the forwarding IP-address on the router through which this DS can be accessed (this depends on the router setup**). Comment next to the IP-address shows whether the DS is local (otherwise it is remote). If the DS is running with DHCP enabled the note "DHCP" is also displayed next to the IP-address.
- Access method and programming port number of the DS itself or the forwarding port on the router through which this DS can be accessed (this depends on the router setup**). Access parameters for the address book mode topic provides detailed info on the subject.
- Owner name and device name fields displays the data from the <u>Owner Name (ON)</u> and <u>Device Name (DN)</u> settings of the DS. The purpose of these settings is to simplify distinguishing between the Device Servers in the *device list*.
- **Comment field** (unlike owner name and device name) is associated with the address book entry and is stored on the PC.

Device list of the address book mode is not sorted and is kept in the original order of entry. You can rearrange the list by dragging and dropping the entries.

### **Programmer's info:**

In the address book access mode broadcast commands are not used. Clicking *Refresh button* makes the DS "poll" each address book entry individually. Polling consists of sending a PING and (if there is a reply to the PING) an

**Echo (X) command**. If there is no reply to the PING <u>no response</u> status is displayed for this DS. If there is a reply to the PING but no reply to the **Echo (X) command** then the *DS Manager* assumes that this is an <u>unknown device</u>.

Notice that address book entries with inband access method are not polled at all when you click *Refresh* (see <u>access parameters for the address book mode</u>).

* Ability to access remote Device Servers also depends on the configuration of the network, routers, and Device Servers.

** Here we touch on a very complicated subject. Modern routers offer a bewildering array of setup options. We will attempt to cover this in details in our upcoming white papers.

### Access parameters for the address book mode

Modern routers offer a bewildering array of routing arrangements and security (firewall) options*. To adjust for all this complexity the address book mode provides a flexibility of defining access parameters separately for each entry in the list. This includes, apart from the IP-address, an **access method** and an **access** (command) port number.

Both parameters are set in the address book entry *dialog* (see <u>editing the address book</u>).

The access method defines how the DS Manager communicates with the DS:

- When out-of-band UDP access method is selected the DS Manager communicates with the DS using command UDP datagrams sent to command port 65535 (or 32767) of the DS. <u>Out-of-band UDP commands</u> is a primary way of network programming that requires no preliminary setup on the DS side. In other words, it always works as long as the routers and firewall do not ban UDP traffic to port 65535 (32767). Therefore, we suggest you to always use this access method whenever possible. The DS Manager allows you to input any port number but actually only two UDP command ports are provided on the DS- 65535 and 32767 (either one can be used).
- When inband TCP access method is selected the DS Manager communicates with the DS by sending commands through the TCP connection established to the data port of the DS (this is the port number defined by the Data Port Number (PN) setting). Inband TCP commands provide a secondary method of network programming that can be used in situations when out-of-band UDP access is impossible. You can use any access port number- this is an additional flexibility- just make sure that you program the same port number on the DS and in the address book entry. There are several limitations associated with inband access:
  - For "inband" address book entries the *DS Manager* does not automatically verify DS presence when the *Refresh button* is pressed. Therefore, after the *Refresh button* is clicked all Device Servers for which the inband access is defined initially appear in the list with the refrest desired action: press <u>Settings button</u> or <u>Buzz button</u> and see the result (<u>Upgrade</u>, <u>Initialize</u>, and <u>Routing Status</u> functions are not available for "inband" address book entries). At this point the *DS Manager* will attempt to establish a TCP connection to the DS and find out if the DS is accessible. This will be reflected in the *device list*.
  - For the inband access to work the DS must be preset in a certain way firstread <u>preparing the DS for inband access</u> for step-by-step instructions.
  - It is not possible to access the DS using inband access method when the DS is already engaged in a data TCP connection with another application and/or

network host. Since inband commands are, by definition, the commands that are passed within the data connection itself the *DS Manager* actually establishes a data TCP connection with the DS in order to program it (this is why this connection is made to the data port of the DS, not the command port). The DS only allows for a single data connection at a time, so if it is already engaged in a data connection with another application and/or network host the *DS Manager* will be rejected.

• When telnet TCP access method is selected the *DS Manager* performs programming through a TCP connection established to port 23 of the DS (see <u>telnet TCP programming</u>). Unlike inband access method, this does not require any prior setup of the DS side but will only work with newer Device Servers that run on **firmware V3.50 or higher**.

* Here we touch on a very complicated subject. Modern routers offer a bewildering array of setup options. We will attempt to cover this in details in our upcoming white papers.

### Preparing the DS for inband access

As explained in <u>access parameters for the address book mode</u> a certain preprogramming must be made on the DS side before this DS can be accessed using inband access method. Inband access method is usually used for remote Device Servers at locations with which out-of-band communications are not possible. Therefore, it may be not possible to pre-program the DS for inband access when it is already installed in its intended remote location!

### There are two ways in which the pre-programming can be done:

- Use the <u>auto-discovery access mode</u> to pre-program the DS from a PC that is located on the same network segment as this DS. Alternatively, you can temporarily connect the DS to a local network segment, pre-program it, then return it to its intended remote location.
- Use the <u>COM access mode</u>. Connect the serial port of the DS to the COM port of the PC and make the pre-programming through the serial port.

### Here is what you need to do:

- Select the DS:
  - If the pre-programming is to be done through the network select the <u>auto-</u> <u>discovery access mode</u> and double-click on the DS in the *device list-* this will open the *settings dialog*. You don't have to change the IP-address of the DS- in this mode the DS Manager will be able to access even Device Servers with unreachable IP-address;
  - If the pre-programming is to be done through the serial port select the <u>COM access mode</u> and double-click on the COM port (to which the DS is connected) in the *device list*. You will be asked to press the <u>setup button</u>* and then the *settings dialog* will be opened.
- In the settings dialog make the following choices:
  - Set desired IP-address for this DS (<u>IP-address (IP) setting</u>). Once the DS is
    installed in its intended remote location you won't be able to access it unless it
    already has a suitable and known IP-address;
  - Set desired data port number (<u>Port Number (PN) setting</u>). Once the DS is installed in its intended remote location you won't be able to access it unless it already has a suitable and known port number;

- Select 1 (TCP) for the <u>Transport Protocol (TP) setting</u>. Inband access is only possible when the TCP transport protocol is selected.
- Select 0 (server) or 1 (server/client) for the **Routing Mode (RM) setting**. The DS won't accept data connections when the **Routing Mode** is 2 (client) and the inband programming is performed through the data connection.
- Select 1 (enabled) for the Inband Commands (IB) setting.
- Press *OK* to close the *settings dialog* and reboot the DS.

### Note on DHCP servers

Procedure above includes the setup of the IP-address. This should only be done if the remote network segment doesn't have DHCP service. If there is a DHCP service then it is better to run with the **DHCP (DH) setting** at 1 (enabled) and let the DHCP server handle the IP-address of the DS automatically.

The problem here is that the DHCP server may change the IP-address of the DS in the future and you will not know about this! If you want to prevent this from happening then set the IP-address of the DS manually and configure this IP-address as manually managed on the DHCP server's side (most DHCP servers provide an option to exclude certain IPs from automatic management).

* On EM100, EM120, EM200, EM202- pull the <u>MD line</u> LOW for at least 100ms.

### Troubleshooting (address book mode)

This topic provides a list of hints that can help you figure out why the *device list* of the <u>address book mode</u> shows a particular DS (address book entry) with "no response" or "unknown device" status. See <u>troubleshooting (auto-discovery mode)</u> and <u>troubleshooting (COM mode)</u> for hints on other two access modes.

In the <u>address book access mode</u> you do not encounter a situation when you cannot "see" some entries in the *device list*. This is because this list is created manually by you and all address book entries are displayed at all times, even when corresponding Device Servers cannot be reached. Instead, you often have to solve the problem of why the *DS Manager* cannot contact the DS specified in the particular address book entry.

### The problem can manifest itself in two different ways:

- --- The *DS Manager* indicates that there is no response from the IP-address specified in the address book entry (no status icon is displayed at all).
- The *DS Manager* indicates that there *is* some kind of device at the specified IP-address but it doesn't seem to be a Tibbo Device Server (the question mark is displayed).

"No response" status is displayed when the *DS Manager* cannot PING the IP-address specified in the address book entry.

### Here is why you may get "no response" status:

- The DS may be switched off or not connected to the network*.
- Incorrect IP-address may be specified for this address book entry. Think carefully what IP-address you input. Depending on the router setup you may need to input the IP-address of the DS itself or the access (forwarding) IP-address on the router**.
- Firewall software on your PC or on the router may be set to disallow PINGs (a very common situation on many networks). For the *DS Manager* to work you must have

PING (ICMP) traffic enabled. Attention here! Our experience shows that many Users are not aware of the firewall software installed on their own PCs! Some firewalls come as part of larger "protection" suites (anti-virus, anti-intrusion, etc. programs). Some operating systems, such as *Windows XP*, include the firewall software too.

• If your DS is running an older firmware (V2.xx) then it will not be accessible through the network and won't respond to PINGs in the following cases:



When the DS is in the <u>serial programming mode</u> (status LEDs of the DS "play" the pattern as shown on the left)**;

•••••

When the DS is in the <u>error mode</u> (status LEDs of the DS "play" the pattern as shown on the left)**.

This *does not* apply to the Device Servers running DS firmware V3.xx or higher. In this firware the DS is visible on the network at all times.

"Unknown device" status is displayed when there is no reply to the echo command sent by the *DS Manager*. This command is unique to Tibbo Device Servers and is used to identify them on the network (and also collect status information). Depending on the <u>access method</u> specified for this address book entry the echo command may be sent as <u>out-of-band UDP command</u> or <u>inband TCP command</u>.

Here is why you may get "unknown device" status:

- If out-of-band (UDP) access method is selected for this address book entry:
  - In certain cases this may be because the DS is switched off or not connected to the network. It is true that if the *DS Manager* displays the **?** icon this means that it has already got the reply to the PING request but in some router modes the PING reply actually comes from the router, not the DS itself**. Therefore, do make sure that the DS is online;
  - Incorrect programming port number may be specified for this address book entry. Think carefully what port number you input. Depending on the router setup you may need to input the command port number on the DS itself (i.e. 65535 or 32767, you can use either one) or the access (forwarding) port on the router**;
  - Firewall software on your PC or on the router may be set to disallow UDP traffic (a very common situation on many networks). For the *DS Manager* to work you must enable UDP traffic to the command port specified in this address book entry. In some router setups** UDP traffic through the router is very unreliable or completely impossible. In this case you may need to use <u>inband access method</u> which relies on TCP protocol.
- If inband TCP access method is selected for this address book entry:
  - First of all remember, that for "inband" address book entries the *DS Manager* does not automatically verify DS presence when the *Refresh button* is pressed. Therefore, after the *Refresh button* is clicked all Device Servers for which the inband access is defined initially appear in the list with the ? icon. If you want to check if such a DS is accessible then attempt to execute the desired action: press <u>Settings button</u> or <u>Buzz button</u> and see the result (<u>upgrade</u>, <u>initialize</u>, and <u>routing status</u> functions are not available for "inband" address book entries). At this point the DS Manager will attempt to establish a TCP connection to the DS and find out if the DS is accessible. This will be reflected in the *device list*.
  - Incorrect programming port number may be specified for this address book entry. Think carefully what port number you input. Depending on the router

setup you may need to input the data port number on the DS itself (this is the port number specified by the **<u>Data Port Number (PN) setting</u>** of the DS) or the access (forwarding) port on the router**;

- The DS may not be configured for inband programming- read preparing the DS for inband access for step-by-step instructions.
- The DS may be already engaged in a data TCP connection with another application and/or network host. Since inband commands are, by definition, the commands that are passed within the data connection itself the *DS Manager* actually establishes a data TCP connection with the DS in order to program it (this is why this connection is made to the data port of the DS, not the command port). The DS only allows for a single data connection at a time, so if it is already engaged in a data connection with another application and/or network host the *DS Manager* will be rejected***.
- If telnet TCP access method is selected for this address book entry:
  - <u>Telnet TCP access method</u> is only supported by newer Device Servers running firmware V3.50 or higher. Make sure you are not attempting to use this access method for the Device Server that doesn't support it;
  - Incorrect programming port number may be specified for this address book entry. Think carefully what port number you input. Depending on the router setup you may need a standard telnet port of 23 or some other access (forwarding) port on the router**.

* Really sorry for this "hint"... it's just that this is the root cause of the problem in many cases!

** Here we touch on a very complicated subject. Modern routers offer a bewildering array of setup options. We will attempt to cover this in details in our upcoming white papers.

*** We understand that this is a limitation and are working to remove it.

### COM access mode

Can't access your Device Server through the serial port? See <u>troubleshooting</u>!

**COM mode** is selected by choosing "Device Servers attached to the COM ports" from the access mode drop-down box, located at the top of the *DS Manager's* main window. In the COM access mode the DS is accessed through its serial port. Therefore, you must connect the serial port of the DS to the unused COM of your PC using a DS-to-PC cable (like <u>WAS-1455</u> supplied by Tibbo).

In the COM access mode the *device list* displays all physical COM ports of your PC. The *DS Manager* is not able to determine which COM the DS is connected to so you have to make a correct selection by yourself.

For the *DS Manager* to access the DS the latter must be in the <u>serial programming mode</u>. To put the DS into this mode press the <u>setup button</u>*.

Note:

••••••

Status LEDs of the DS are playing a *serial programming mode pattern* (shown on the left) when the serial port of the DS is in the <u>serial programming mode</u> (click <u>here</u> to see all available patterns).

Communications Port (COM1)
Scommunications Port (COM2)

* On EM100, EM120, EM200, EM202- pull the <u>MD line</u> LOW for at least 100ms.

### Troubleshooting (COM mode)

This topic provides a list of hints that can help you figure out why you cannot access the DS through the serial port. See <u>troubleshooting (auto-discovery mode)</u> and <u>troubleshooting (address book mode)</u> for hints on other two access modes.

Here are the reasons why the *DS Manager* may not able to access the DS in the COM access mode:

- The DS may be switched off*.
- Incorrect cable is used to connect the serial port of the DS to the COM port of the PC. Use <u>WAS-1455</u> supplied by Tibbo!
- Wrong COM port is selected in the *device list*.
- The serial port of the DS is not in the <u>serial programming mode</u>. To put the DS into this mode press the <u>setup button</u>**.

<u>Note:</u>

Status LEDs of the DS are playing a *serial programming mode pattern* (shown on the left) when the serial port of the DS is in the <u>serial programming mode</u> (click <u>here</u> to see all available patterns).

* Really sorry for this "hint"... it's just that this is the root cause of the problem in many cases!

** On EM100, EM120, EM200, EM202- pull the <u>MD line</u> low for at least 100ms.

# Functions_1.3

This section lists all "functions" (features) of the *DS Manager*. These functions are associated with the *function buttons* located in the *DS Manager's* <u>main window</u>.

# **Editing DS settings (Settings button)**

Internal settings of DS are viewed and edited in the *settings dialog*. This function is available in <u>all access modes</u>.

To open the *settings dialog* either double-click on the DS in the *device list* (COM port to which the DS is connected if you are in the <u>COM access mode</u>). Alternatively, you can single-click on the DS (COM port) in the *device list* and then press the *Settings button*.

50 t_dev 3.4.61.189 nabled 1168.100.92		M	tabs odifiat
3.4.61.189 inabled 168.100.92			odifiat
nabled 168.100.92 1			odifiat
: 168.100.92 1			odifiat
1			Caller
00		Se	etting
CP			
(evant)			Releva
nabled			
lisabled		s	etting
		-	
evant)			releva
			etting
(evant)			etting
(evant)			
	nabled iisabled erver (Slave) erver (Slave) erver OR Client (Master) lient only ervent) event) event	inabled isabled erver (Slave) erver (Slave) erv	inabled iisabled erver (Slave) erver (Slave) erver (Slave) erver (Slave) erver (Slave) erver (Slave) erver (Slave) erver (Slave) erver (Slave) erver (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave) (Slave

When the *settings dialog* is opened it reads out current values of all settings available on the DS and displays them in a *setting table*. All settings are divided into groups and each group is placed on its own *group tab*. *Dialog caption* displays the version of firmware running on this DS. If "+N" is displayed next to the version number then this means that the NetLoader is present and the firmware of this DS can be upgraded through the network.

Settings dialog can correctly display the settings for Device Servers with different application firmware versions- correct setting table will be displayed for each supported firmware version. The list of settings available in different firmware versions comes from the *.sdf files ("setting definition files") located in the /sdf subfolder of the DST's program folder.

The only setting that is not shown in the table is the **Password (PW) setting**. This setting defines the login password that will have to be entered when you want to

access the DS through the network (i.e. open the *settings dialog*, <u>upgrade</u> or <u>initialize</u> the DS, or <u>change the IP-address</u>). Click *Password button* to set the password (edit the **Password (PW) setting**).

Relevance (or irrelevance) of certain settings depends on the current values of other settings. <u>Setting reference section</u> describes which settings "depend" on which other settings. Additionally, some settings can be relevant but their value can be modified automatically by the DS.

# The settings displayed in the *table* may be in one of the following three states:

- **Relevant** setting name and its value appear in solid black. This means that the setting can be edited.
- Irrelevant- setting name is grayed and the line "[irrelevant]" is displayed instead of the setting value. This means that the setting is currently irrelevant and cannot be edited. To edit such a setting make it relevant first by adjusting the values of other settings. For example, the <u>Gateway IP-address (GI) setting</u> is shown as irrelevant on the screenshot above because the <u>Routing Mode (RM) setting</u> is 0 (server). Select the Routing Mode of 1 (server/client) or 2 (client) and the Gateway IP-address will become relevant.
- Modifiable- setting name is shown in solid black and the setting value is shown in dark red. This means that the setting can be edited but the new value can be automatically overwritten by the DS. For example, the <u>IP-address (IP) setting</u> is relevant at all times but when the <u>DHCP (DH) setting</u> is 1 (enabled) the DS will overwrite original IP-address with the (new) address supplied by the DHCP server.

The *settings dialog* also lets you save current values of DS settings into a file (click *Save button*) and load setting values from file (click *Load button*). Configuration files have the *.ds* extension.

#### **Programmer's info:**

The *DS Manager* reads and writes the values of settings using the <u>**Get Setting (G)**</u> and <u>**Set Setting (S)**</u> commands.

In case of network access (<u>auto-discovery</u> and <u>address book</u> modes) the *DS Manager* has to login first (open the <u>network programming session</u>) and this is done using the **Login (L) command**. Serial programming (<u>COM access mode</u>) doesn't require this step.

Network programming sessions and serial programming are ended either with **Reboot (E) command** (this makes the DS "recognize" new setting values) or with **Logout (O) command** (no reboot).

# Upgrading DS firmware (Upgrade button)

Internal firmware of the DS can be upgraded in the field. This function is available in <u>all access modes</u> with the following limitations:

- Some earlier Tibbo devices (EM100-00/ -01/ -02, DS100-00/ -01/ -02) did not support network upgrades so their firmware can only be upgraded through the serial port (<u>COM access mode</u>).
- All other devices do support network upgrades but such an upgrade is only

possible if a functioning (albeit older) firmware file is already found on the device. This implies that loading a wrong file into the device renders all future network upgrades impossible until a correct upgrade is performed through the serial port.

• Additionally, for the network upgrade to work the *DS Manager* must be able to access the DS using an out-of-band UDP access method. Therefore, Device Servers defined by the "inband" address book entries (in the <u>address book mode</u>) cannot be upgraded through the network (access methods are described in <u>access parameters for the address book mode</u>).

grading	the Device Serv	er			
(±) s	elect firmware file to sure you		into the De orrect firm		lake
D:\TERM	Em_313s.bin	_		Brown	e
	OK	1	Cancel	1	

#### To upgrade the DS firmware:

- Select (single-click) the DS you want to upgrade in the *device list* (or COM port to which the DS is connected in the <u>COM access mode</u>) and click *Upgrade button*. *Upgrading the Device Server dialog* will appear.
- Browse to a file you want to upload into the DS and click OK. Be sure to select correct firmware file- this depends on the DS model and also the way upgrade is done (through the network or through the serial port).
- What happens next depends on the access mode:
  - For network upgrades (<u>auto-discovery</u> and <u>address book</u> modes) the upgrade will start automatically. After the upgrade is finished the *DS Manager* will reboot the DS. The *DS Manager* will also make sure that the DS starts running with the newly loaded firmware and let you know if the DS enters the <u>error mode</u>, which means that its settings must be <u>initialized</u>;
  - For serial upgrades (<u>COM access mode</u>) the procedure is more "manual". You will be asked to switch the DS off, press the <u>setup button</u>*, and switch it back on while keeping the button pressed. Upgrade will start after that. At the end of the upgrade you will be asked to reboot the DS manually (switch it off and on). You will have to also manually check if the DS requires <u>initialization</u>.

#### **Programmer's info:**

The *DS Manager* verifies the <u>NetLoader</u> presence and passes control to it using the **Jump To Netloader (N) command**.

* On EM100, EM120, EM200, EM202- pull the <u>MD line</u> LOW for at least 100ms.

## Initializing the DS (Initialize button)

Internal settings of the DS can be initialized. Initialization restores all settings to their default values*. This function can be used to return the DS to the "known setup" and/or "repair" the DS when one or more settings are found to be invalid (i.e. the DS is in the <u>error mode</u>). This function is available in <u>all access modes</u> with the following limitation:

• When you are working in the <u>address book mode</u> the DS Manager won't let you

initialize the DS for which <u>inband access method</u> is set. This is because initialization would have disabled inband access^{**} and this would have made further interactions with this DS impossible. If you need to initialize such a DS then connect it temporarily to the same network segment as your PC (and use <u>auto-discovery mode</u>) or to the COM port of your PC (and use <u>COM access mode</u>), and then perform initialization.

To initialize the settings of the DS select (single-click) the DS you want to upgrade in the *device list* (or COM port to which the DS is connected in the <u>COM access mode</u>) and click *Initialize button*.

Initialization results differ depending on the access mode. Some settings are always initialized when the initialization command is issued through the serial port (<u>COM access mode</u>) but are only initialized if were invalid when the initialization command is issued through the network (<u>auto-discovery</u> and <u>address book</u> access modes). Some settings are never initialized (no matter what the access mode is) unless found to be invalid.

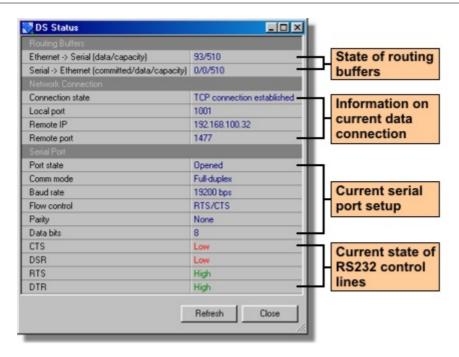
**Example:** the **IP-address (IP) setting** is only affected by the initialization if the DS is accessed through the serial port. When you initialize the DS through the network this setting won't be initialized unless it was invalid. This is done to make sure that the DS can still be accessed through the network after the initialization.

<u>Setting reference</u> provides complete information on each setting of the DS including default factory values and conditions under which a particular setting will be initialized.

## **Programmer's info:**

This function relies on the **Initialize (I) command**.

* These are either default factory values or default values defined by the user (if custom profile is added to the firmware).


** Default factory value for the **Inband (IB) setting** is 0 (disabled) and **Transport Protocol (TP) setting** is 0 (UDP). Inband access must be enabled and the transport protocol must be TCP for the inband access to work.

# Monitoring DS Status (Routing Status button)

DS operation can be monitored remotely, using a *routing status dialog*. To open the *dialog* click the *Routing status* button. This feature is a very useful debugging tool that lets you determine the DS state at any moment. The information in the *dialog* is updated each time *Refresh button* is pressed (this is the button in the *dialog*, not in the *main window*).

This function is available in the <u>auto-discovery</u> and <u>address book</u> modes with the following limitations:

- When you are working in the <u>address book mode</u> you won't be able to use this feature on Device Servers for which <u>inband access method</u> is set. Routing status feature requires out-of-band access! This is because inband access implies sending commands through the TCP data connection and the DS only allows for a single data connection at a time. Since the feature is created mainly to monitor the DS while it is routing the data (i.e. has a data connection with some other network host/application), the only available data connection should not be occupied by the *DS Manager*.
- *Routing status feature* is not supported by the Device Servers running older firmware (earlier than V3.xx).



#### Routing status dialog displays the following information:

- **Current state of routing buffers.** <u>Routing buffers</u> are used as a temporary storage for the data being routed between the Ethernet and serial ports of the DS. The *routing status dialog* reports the number of committed bytes (for serial-->Ethernet buffer), total number of bytes in each buffer ("data"), and the capacity of the buffers. Read <u>serial-to-Ethernet data routing</u> topic to learn what "committed" means. Capacity information is provided because different DS models have buffers of different size.
- **Information on current data connection.** This partially doubles the data reflected by the <u>status icons</u> (displayed in the *device list*) and the <u>status area</u> of the *main window*. Additional information provided by the *routing mode dialog* includes the IP-address and the port number of the network host with which the DS has been/is/will be in a data connection. Here is what these two fields show:
  - After power-up the fields show the IP-address and port defined by the <u>Destination IP-address (DI) setting</u> and <u>Destination Port Number (DP) setting</u>;
  - If these default values are overridden by <u>serial-side parameters and instructions</u> (a.k.a. "modem commands") then the fields show new overriding values;
  - While the data connection is established and after it is closed (aborted) the fields show the IP-address and port of the network host with which this connection is (was) established. Notice that this may be different from the above- if the DS has accepted an incoming connection!
- **Current serial port setup.** This data may be of interest because it will not necessarily match the serial port setup defined by the <u>serial port-</u> <u>related DS settings</u>. The values of settings can be overridden by the <u>network-</u> <u>side parameters</u> (a.k.a. "on-the-fly commands")*. Therefore, the *routing status dialog* can be used to verify actual current serial port setup.
- **Current state of RS232 control lines.** The state of control lines is displayed in the correct polarity for DS100R, DS100B, DS202R, EM100-EV, EM120/EM200-EV, EM202-EV. For EM100, EM120, EM200, EM202 the state is exactly opposite. So, if the state of RTS line (output) is shown as HIGH then this means that the DS is ready to receive the data from attached serial device.

#### **Programmer's info:**

The *DS Manager* uses two commands- **<u>Echo (X)</u>** and **<u>Status (U)</u>**- to read out the current status of the DS.

* On-the-fly commands are used, for instance, by <u>Virtual Serial Ports (VSPs)</u> to change serial port configuration of the DS. This way PC application that has opened the VSP can change the setup of the DS serial port as needed.

## "Buzzing" the DS (Buzz button)

The *buzz feature* allows you to match an entry in the *device list* to an actual physical DS. The feature is available in the <u>auto-discovery</u> and <u>address book</u> modes with the following limitation:

- The *buzz feature* is not supported by the Device Servers running older firmware (earlier than V3.xx).
- Clicking on the *Buzz button* causes the DS (selected in the *device list*) to play a fast-blinking pattern on its status LEDs (shown at the left). This way you can easily identify which device a particular *device list* entry corresponds to.

#### **Programmer's info:**

This function relies on the **Buzz (B) command**.

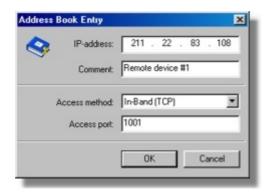
## Changing IP-address (Change IP button)

The *DS Manager* provides a way to assign a new IP-address to the DS over the network. This is done by sending a broadcast command that refers to the target DS by its MAC-address*. All Device Servers on a local network segment will receive the broadcast but only the one whose MAC-address matches the one specified in the broadcast will react.

The feature will work even if the DS had an unreachable or invalid IP-address. The disadvantage is that, since the broadcasts cannot pass through the routers, the feature can only be used with local Device Servers and, therefore, is limited to the <u>auto-discovery access mode</u>.

To assign a new IP-address to the DS click the *Change IP button*, input the new IP-address and click OK.

#### **Programmer's info:**


This function relies on the Assign IP-address (A) command.

*MAC-addresses are unique for all Device Servers (and, in fact, all Ethernet devices).

# Editing the address book (Add, Remove, Edit buttons)

Add, Remove, and Edit buttons are used to edit the address book. Address book is a fixed list of Device Servers displayed in the <u>address book access mode</u>. Remove and Edit buttons are only visible in the <u>address book access mode</u>, while the Add button is also available in the <u>auto-discovery mode</u>. This allows you to add the DS "found" in the <u>auto-discovery mode</u> to a permanent list in the <u>address book mode</u>.

Clicking Add or Remove button brings up the address book entry dialog.



#### The dialog has the following fields:

- **IP-address.** This is the IP-address of the DS itself or the forwarding IP-address on the router through which this DS can be accessed (this depends on the router setup*).
- **Comment.** This comment is stored on the PC (not in the DS) and can contain any useful information (i.e. "Remote device #1").
- Access method. The *DS Manager* can access a particular DS using <u>out-of-band (UDP)</u>, <u>inband (TCP)</u>, or <u>telnet (TCP)</u> access method. See <u>access parameters for the address book mode</u> topic for more information.
- Access port. This is the access port on the DS to which the *DS Manager* will send programming commands. Depending on the router setup this may be a port on the DS itself or the forwarding port on the router*. The port number on the DS is different depending on the selected access method. See access parameters for the address book mode topic for more information.

* Here we touch on a very complicated subject. Modern routers offer a bewildering array of setup options. We will attempt to cover this in details in our upcoming white papers.

# Warnings and messages

#### This reference section contains the following information:

- <u>Additional information on the status messages</u> displayed in the *status area* of the *DS Manager's main window*.
- <u>Additional information on the warning and error messages</u> displayed by the *DS Manager*.

## DS status messages

This section provides additional information on the status messages displayed in the *status area* of the *DS Manager's main window*.

The list of messages is arranged in the alphabetical order.

## Error mode

<b>Description</b>	
Message text:	Device Server is running in the <u>error mode</u> and must be <u>reinitialized</u>
Corresponding status icon:	
May appear in:	Auto-discovery and address book access modes

## **Details**

This status means that some settings on this DS are invalid and require <u>initialization</u>. The DS should not be allowed to operate in this condition and must be <u>reinitialized</u> as soon as possible.

#### **Programmer's info:**

The *DS* Manager collects DS status information (and detects DS presence) using the **<u>Echo (X) command</u>**. Whether or not the DS is in the <u>error mode</u> is determined from the state of the *e* flag in the command response.

#### Firmware upgrade mode

Description	
Message text:	Device Server is running in the firmware upgrade mode and is ready to accept new firmware file
Corresponding status icon:	(±)
May appear in:	Auto-discovery and address book access modes

## <u>Details</u>

This status means that the DS is running the <u>NetLoader</u>. NetLoader is a separate firmware component that facilitates application firmware upgrades over the network. Normally, this icon is displayed during the <u>network firmware upgrade</u>. After the network upgrade is finished the *DS Manager* reboots the DS and after that the DS is supposed to start running the newly loaded firmware.

If the DS enters the firmware upgrade mode unexpectedly and if this mode "persists" then this means that DS firmware is corrupted, or that incorrect firmware file was uploaded, or that the upload was incomplete.

#### Programmer's info:

The *DS* Manager collects DS status information (and detects DS presence) using the **Echo (X) command**. This command is supported both by the application firmware and by the <u>NetLoader</u>. Whether the DS is running its application firmware or is in the firmware upgrade mode is determined from the *m* flag in the command response (it is 'N' for the application firmware and 'L' for the NetLoader).

## **IP-address not obtained**

Description	
Message text:	Device Server has not yet obtained its IP- address from the DHCP server
Corresponding status icon:	(III)
May appear in:	Auto-discovery and address book access modes

#### **Details**

This status means that the DS is running with DHCP enabled (**DHCP (DH) setting** is 1 (enabled)) and the DS hasn't yet received its IP-address from the DHCP server. The DS attempts to configure its IP-address after the powerup and won't perform its routing function until IP configuration is completed. Typically, IP configuration takes only 1-2 seconds to complete. If the DS is "stuck" in this state for much longer then this means that DHCP service may not be available on your network.

#### **Programmer's info:**

The *DS Manager* collects DS status information (and detects DS presence) using the **Echo (X) command**. IP configuration status is determined from the state of the *i* flag in the command response.

#### No response

Description	
Message text:	No response received from this IP-address (and port)
Corresponding status icon:	(no icon is displayed for this status)
May appear in:	Address book access mode

## **Details**

See <u>troubleshooting (address book mode)</u> for a list of hints on why you might be getting no reply for this address book entry.

#### **Programmer's info:**

- - -

## No status info available

**Description** 

Message text:

Device Server did not return the status information. This means that this DS is running an older firmware version

#### Corresponding status icon:

May appear in:

Auto-discovery and address book access modes

### **Details**

In the V3.xx firmware the DS returns its status information along with the response to the echo request, sent by the *DS Manager* during the refresh. In older firmware versions (V2.xx) the response from the DS does not contain any status information. You are recommended to <u>upgrade</u> your firmware to the latest version.

۵

## Programmer's info:

The *DS Manager* collects status information (and detects DS presence) using the **Echo (X) command**. In the old firmware versions this command only returned the first two fields (*nnn.nnn.nnn.nnn.nnn* and *ppppp*).

## Programming in progress

Description	
Message text:	<u>Out-of-band (UDP)</u> network programming session is in progress; <u>Inband (TCP)</u> network programming session is in progress; The DS is in the <u>serial programming mode</u>
Corresponding status icon:	◆祭
May appear in:	Auto-discovery and address book access modes

## **Details**

Three separate status messages are displayed for three possible forms of DS programming: <u>serial</u>, <u>out-of-band (UDP</u>), and <u>inband (TCP</u>). Serial programming is considered to be in progress whenever the serial port of the DS is in the <u>serial programming mode</u>. <u>Out-of-band (UDP</u>) or <u>inband (TCP</u>) programming session is considered to be in progress after the network host has logged in using a corresponding access method (out-of-band or inband)- see <u>authentication</u>*. Inband (TCP) access method is only used in the <u>address book mode</u> (see <u>access parameters for the address book mode</u>).

All three forms of programming are mutually exclusive- see programming priorities.

#### **Programmer's info:**

The *DS* Manager collects DS status information (and detects DS presence) using the **Echo (X) command**. Whether or not any form of programming is in progress is determined from the state of the *s* flag in the command response. Network logins are performed using the **Login (L) command**.

* Just sending commands that do not require prior login does not constitute a programming session.

## Routing buffer overflow

Description	
Message text:	Ethernet-to-serial buffer overflow; Serial-to-Ethernet buffer overflow; Serial-to-Ethernet and Ethernet-to-serial buffer overflow
Corresponding status icon:	(overflow condition is displayed only in conjunction with "connection established" icon)
May appear in:	Auto-discovery and address book access modes

## **Details**

These messages are displayed when one or both routing buffer overflow is detected. <u>Routing buffers</u> are used for temporary data storage when routing data between the Ethernet and serial ports of the DS.

In general, do the following to avoid overflows:

- For Ethernet-to-serial buffer: using TCP/IP transport protocol (see **Transport Protocol (TP) setting**) guarantees that this buffer never overflows.
- For serial-to-Ethernet buffer: using RTS/CTS flow control (see <u>Flow Control (FC) setting</u>) guarantees that this buffer never overflows*.

#### **Programmer's info:**

The DS Manager collects DS status information (and detects DS presence) using the **Echo (X) command**. Buffer condition is determined from the state of the **E** and **S** flags in the command response.

* Naturally, attached serial device must also support RTS/CTS flow control for this to work.

## Unknown device

Description	
Message text:	Although there is SOME device at this IP-address it appears that this is not a Device Server
Corresponding status icon:	8
May appear in:	Address book access mode

## **Details**

See <u>troubleshooting (address book mode)</u> for a list of hints on why you might be getting this status for an address book entry.

## **Programmer's info:**

- - -

## **Unreachable IP-address**

<b>Description</b>	
Message text:	Current IP-address is unreachable with your network
Corresponding status icon:	🔆 💭 🚸 (The whole icon is grayed)
May appear in:	Auto-discovery access mode

#### **Details**

This status means that the *DS Manager* has detected the DS on the local network segment but is unable to communicate with this DS by using a "normal" IP addressing. See <u>troubleshooting (auto-discovery mode)</u> for a list of hints on why this could happen.

#### **Programmer's info:**

- - -

## Warning and error messages

This section provides additional information on the warning and error messages displayed by the *DS Manager*.

The list of messages is arranged in the alphabetical order.

#### Broadcast access not supported

<b>Description</b>	
Message text:	The IP-address of this DS is unreachable and the DS can only be accessed in the <u>broadcast mode</u> . The firmware on this Device Server is outdated and does not support <u>broadcast access</u> . <u>Assign a compatible IP-address</u> or <u>upgrade</u> to firmware V3.xx or higher (recommended)
May appear in:	<u>Auto-discovery access mode;</u> <u>Settings</u> , <u>Initialize</u> , <u>Buzz</u> functions

#### **Details**

This message means that the *DS Manager* cannot communicate with the DS using a normal IP-addressing. Possible reasons for why this could happen are outlined in <u>troubleshooting (auto-discovery mode)</u>.

The *DS Manager* can access local Device Servers even when normal IP communications is impossible. This is done through a so called <u>broadcast access</u>. This functionality, however, is only supported by DS firmware V3.xx or higher.

The way out of this situation is to make normal IP communications possible or/and to <u>upgrade</u> the DS firmware to V3.xx or higher. Depending on how old the DS firmware is you may not be able to upgrade the firmware over the network and will need to do this through the serial port of the DS (in the <u>COM access mode</u>).

#### Programmer's info:

Broadcast access is based on the **<u>Select In Broadcast Mode (W) command</u>** that was only introduced in firmware V3.xx.

### Could not connect to the DS (inband access)

Description	
Message text:	I <u>nband (TCP) access method</u> is defined for this Device Server and the <i>DS Manager</i> was unable to establish a TCP connection to the DS
May appear in:	<u>Address book access mode;</u> <u>Settings</u> , <u>Initialize</u> , <u>Buzz</u> functions

## **Details**

When <u>inband (TCP) access</u> method is specified for a particular address book entry and the *DS Manager* needs to access the DS it must establish a TCP connection to this DS first. This message indicates that TCP connection could not be established. Read <u>troubleshooting (address book mode)</u> for hints on what might be causing the problem.

#### **Programmer's info:**

- - -

#### Data link in progress

Description	
Message text:	This Device Server has a data connection in progress. Performing requested operation will abort this connection. Continue still?
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Settings</u> , <u>Upgrade</u> , <u>Initialize</u> functions

#### **Details**

---

#### **Programmer's info:**

The *DS* Manager verifies whether the DS is engaged in a data connection by sending the **Echo (X) command** and analysing the status of the **c** flag in the reply. If this flag is not '*' then this means that the data connection is not closed (is in progress).

## DS lost (after changing IP)

<b>Description</b>	
Message text:	IP-address was changed successfully but the <i>DS</i> <i>Manager</i> cannot locate this Device Server on the network
May appear in:	Auto-discovery access mode; Change IP function

#### <u>Details</u>

After having changed the IP-address the *DS Manager* makes sure that the DS is online and using the IP-address that was just assigned. This message appears when the DS has confirmed that command was accepted but later could not be found among local Device Servers. This situation is not normal and may indicate that the new IP-address is (for some reason) blocked by your PC or network equipment.

Note, that this is more serious than the case when the IP-address turns out to be unreachable (this situation is reported by the <u>unreachable IP-address</u> status message). If this was the case the *DS Manager* would still be able to detect the DS on the network. Watch out for some special firewall settings of your PC or similar reasons why communications with a certain IP-address might be blocked (also see <u>troubleshooting (auto-discovery mode)</u>).

#### Programmer's info:

IP-address is changed using **Assign IP-address (A) command**. This message means that **OK (A) status code** was actually received for this command but the DS could not be found during subsequent refresh operation.

### DS lost (after entering NetLoader)

Description	
Message text:	DS Manager cannot locate the Device Server after making it enter the firmware upgrade mode. This may be because the IP-address (or MAC- address) of this Device Server has changed
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Upgrade</u> function

#### <u>Details</u>

Firmware upgrades over the network are facilitated by a separate firmware component called the <u>NetLoader</u>. To upgrade the application firmware over the network the *DS Manager* makes the DS switch to the <u>NetLoader</u> first.

When control is passed to the NetLoader, it attempts to read the values of <u>IP-</u> <u>address (IP)</u> and <u>MAC-address (FE)</u> settings and use these values. This way the switchover to the NetLoader is "seamless" and the DS is still accessible at the same IP and MAC as when it was running the application firmware.

In selected cases, the readout of those two settings can fail (for instance, when one or both of these settings is/are invalid). In this case the DS will replace the invalid value(s) with a default one: 127.0.0.1 for the IP-address, 0.1.2.3.4.5 for the MAC-address.

If you are accessing the DS using the <u>address book mode</u> and the DS assumes these default values you may not be able to access it (at least temporarily). We recommend you to connect the DS to the same network segment with your PC and use the <u>auto-discovery access mode</u>.

#### Programmer's info:

- - -

## DS lost (after exiting NetLoader)

. ..

Description	
Message text:	<u>Upgrade</u> completed successfully but the <i>DS</i> <i>Manager</i> was unable to locate this Device Server on the network after rebooting it
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Upgrade</u> function

## **Details**

The cause of this message is similar to that of the

<u>DS lost (after entering NetLoader)</u> message (but "in reverse"). After the <u>NetLoader</u> has finished working and the DS was rebooted its IP-address and/or MAC-address have probably changed. To the *DS Manager* this will look like "disappearance" of the DS from the network.

To "find" the DS connect it to the same network segment as the PC and run the *DS Manager* in the <u>auto-discovery access mode</u>. To find out which device in the list is the one you are looking for either disconnect all other Device Servers from the network (this will leave only one DS in the list) or use the <u>Buzz function</u> to locate the DS.

#### Programmer's info:

- - -

## DS lost (after initialization)

Description	
Message text:	<u>Initialization</u> was completed successfully but the <i>DS Manager</i> cannot locate this Device Server on the network
May appear in:	Auto-discovery access mode; Initialize function

## **Details**

After having performed the initialization the *DS Manager* makes sure that the DS is online. Network initialization does not change the IP-address unless the <u>IP-</u> <u>address (IP) setting</u> were found to be invalid. The default factory value for this setting is 127.0.0.1*, so see if there is a DS now that has this IP-address. If so then this may be your "lost" Device Server!

## Programmer's info:

- - -

_

* Unless another default value has been defined through a custom profile.

## Duplicate address book entry

. . .

Description	
Message text:	Such address book entry already exists
May appear in:	Auto-discovery and address book access modes;

#### <u>Details</u>

Each DS in the address book is identified by the combination of the IP-address, access port number, and the access method (see <u>access parameters for the address book mode</u>). This message means that your input matches another address book entry that already exists.

#### Programmer's info:

- - -

## Error mode (initialization required)

<b>Description</b>	
Message text:	Device Server is currently running in the <u>error mode</u> , which means that some of its settings are invalid. You are recommended to <u>initialize</u> the Device Server first. Continue still?
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Settings</u> function

#### **Details**

This message appears when you attempt to open the <u>settings dialog</u> while the DS is in the <u>error mode</u>. Because some settings are invalid the *DS Manager* is unable to read out their values and display them in the *settings dialog*.

Once the <u>error mode</u> is detected it is better to <u>initialize</u> the DS as soon as possible. Continuing DS operation is this state may lead to incorrect (unexpected) DS behavior and also exposes the DS to unauthorized access- password protection is disabled when the DS is in the <u>error mode</u>!

### **Programmer's info:**

The *DS Manager* verifies whether the DS is running in the <u>error mode</u> by sending the <u>**Echo (X) command**</u> and analysing the status of the *e* flag in the reply.

#### Failed to start the NetLoader

Description	
Message text:	Failed to put the Device Server into the firmware upgrade mode. <u>NetLoader</u> may not be installed
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Upgrade</u> function

## <u>Details</u>

<u>Firmware upgrades</u> through the network are facilitated by a separate firmware component called the <u>NetLoader</u>. When you click <u>Upgrade button</u> the *DS Manager* instructs the application firmware of the DS to pass the control to the NetLoader. Before doing this application firmware checks if the NetLoader is actually loaded. This message is displayed when the NetLoader appears to be absent.

Here is why the NetLoader may be missing:

- If your DS model is EM100-00/ -01/ -02, DS100-00/ -01/ -02 then this DS cannot be upgraded through the network in principle. The only way to upgrade such a DS is through the serial port (in the COM access mode).
- For EM100-03, DS100R-03, DS100B-00 network upgrades are possible, but only if the <u>NetLoader</u> is installed. When the NetLoader is not present the only way to upgrade the DS is through the serial port (in the <u>COM access mode</u>). If you choose the upgrade file that has "SN" in its name then you will be able to upgrade the firmware and install the NetLoader at the same time! From this moment on you will be able to perform network upgrades as well. Firmware download page at <WEB> provides complete info on what file to choose.

#### **Programmer's info:**

The *DS Manager* instructs the application firmware of the DS to switch to the NetLoader by sending **Jump To NetLoader (N) command**. This message is displayed when **Failed (F) reply code** is returned.

#### Function not available (upgrade mode)

Description	
Message text:	This Device Server is currently running in the firmware upgrade mode. Requested function is not available at this time
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Settings</u> , <u>Initialize</u> , <u>Routing Status</u> , <u>Buzz</u> , <u>Change IP</u> functions

#### **Details**

Network upgrade mode is a separate mode of operation facilitated by an independent firmware component called the <u>NetLoader</u>. The NetLoader allows you to upgrade the main application firmware of the DS over the network. Naturally, when the <u>NetLoader</u> is running the DS is not executing the application firmware and all functions related to the "normal" operation of the DS are not available. The only available function in this mode is <u>Upgrade</u>.

#### **Programmer's info:**

- - -

## **Function not supported**

Description	
Message text:	The firmware on this Device Server is outdated and does not support this function. You are recommended to upgrade to firmware V3.xx or higher
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Upgrade</u> , <u>Routing Status</u> , <u>Buzz</u> functions

#### **Details**

This message means that the firmware on a particular DS you are accessing is

outdated (earlier than V3.xx). The function you have requested requires firmware V3.xx or higher.

We recommend you to <u>upgrade</u> to V3.xx (or higher) firmware. This will allow you to fully use all the features of the *DS Manager*. Depending on how old the firmware is you may not even be able to upgrade the firmware over the network (and this is one of the reasons why you may be reading this message). In this case upgrade the DS firmware via the serial port (in the <u>COM access mode</u>).

#### **Programmer's info:**

- - -

# Incorrect password

Description	
Message text:	You have entered an incorrect login password. Please, try again
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Settings</u> , <u>Upgrade</u> , <u>Initialize</u> , <u>Change IP</u> functions

#### **Details**

Login password is the one you have set by clicking on the *Password button* in the *settings dialog*. You cannot access the DS through the network without this password.

If you have forgotten the password then you can either:

- Access the DS in the <u>COM access mode</u> (this does not require password), or...
- <u>Quick-initialize</u> the DS- this will erase the password (only supported by firmware V3.xx or higher).

#### **Programmer's info:**

Login password is the one defined by the **Password (PW) setting** of the DS. Also see <u>authentication</u> topic.

## Initialization failed

Description	
Message text:	This Device Server is (still) running in the <u>error mode</u> . Press <i>Retry</i> to repeat the <u>initialization</u> . If the problem persists the Device Server may be malfunctioning
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Initialize</u> function

## **Details**

This message appears when the DS <u>initialization</u> fails. <u>Initialization</u> restores all DS settings to their default values and, therefore, "repairs" invalid settings that caused the DS to enter the <u>error mode</u>. It is not normal that the DS is still in the <u>error mode</u> after the <u>initialization</u> and may indicate DS hardware failure.

### Programmer's info:

The *DS Manager* verifies whether the DS is running in the <u>error mode</u> by sending the <u>**Echo (X) command**</u> and analysing the status of the *e* flag in the reply.

#### Initialization not allowed

Description	
Message text:	<u>Inband (TCP) access method</u> is selected for this Device Server. <u>Initialization</u> is not allowed since this would disable inband access and subsequent communications with the <i>DS Manager</i>
May appear in:	Address book access mode; Initialize function

#### <u>Details</u>

This message is only shown when <u>inband (TCP)</u> access method is selected for a particular address book entry. Inband TCP access to the DS is only possible when the <u>**Inband (IB) setting**</u> is 1 (enabled) and the <u>**Transport Protocol (TP) setting**</u> is 1 (TCP). Default value of these settings is 0*. Therefore, <u>initialization</u> would result in the inability to access this DS using inband communications!

To initialize this DS find some other way to communicate with it:

- Temporarily connect the DS to the same network segment with your PC and <u>initialize</u> the DS in the <u>auto-discovery access mode</u> (this mode always uses outof-band (UDP) access method).
- Temporarily connect the serial port of the DS to the COM port of your PC and <u>initialize</u> it in the <u>COM access mode</u>.

#### **Programmer's info:**

---

* Unless another default value has been defined through a <u>custom profile</u> (the DS Manager won't detect this and will still disallow the device to be initialized while accessing using inband commands).

#### Initialization required

Description	
Message text:	This Device Server is running in the <u>error mode</u> . This means that newly loaded firmware has some new (different) settings that need to be <u>initialized</u> . Do you want to do this right now?
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Upgrade</u> function

## **Details**

Newly loaded firmware may have new or different settings that have never been <u>initialized</u> on this particular device. After the DS has started running the newly loaded application firmware it has detected that these settings contain invalid values and entered the <u>error mode</u>. You are recommended to <u>initialize</u> the DS as soon as possible.

#### Programmer's info:

The *DS Manager* verifies whether the DS is in the <u>error mode</u> by sending the <u>**Echo (X) command**</u> and analysing the status of the *e* flag in the reply.

### Input login password

<b>Description</b>	
Message text:	Input login password for this Device Server
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Settings</u> , <u>Upgrade</u> , <u>Initialize</u> , <u>Change IP</u> functions

### **Details**

Login password is the one you have set by clicking on the *Password button* in the *settings dialog*. You cannot access the DS through the network without this password.

If you have forgotten the password then you can either:

- Access the DS in the <u>COM access mode</u> (this does not require password), or...
- <u>Quick-initialize</u> the DS- this will erase the password (only supported by firmware V3.xx or higher).

#### **Programmer's info:**

Login password is the one defined by the **Password (PW) setting** of the DS. Also see <u>authentication</u> topic.

## Invalid firmware file (or comm error)

Description	
Message text:	<u>Firmware upgrade</u> has failed. This may be because you are trying to upload an invalid file or because of communications error
May appear in:	COM access mode; Upgrade function

#### **Details**

This message means that either you tried to upload an invalid file or that there was a communications error. Check the file you are trying to upload, your serial connection (cable, baudrate, etc.) and try again.

The firmware file you are supposed to upload into the DS depends on the DS model number and also on the way you are performing the upgrade- through the network (<u>auto-discovery</u> and <u>address book</u> modes) or through the serial port (<u>COM access mode</u>). Firmware download page at <WEB> provides complete info on what file to choose. Be sure you understand this information and select a correct firmware file.

#### Programmer's info:

- - -

## Invalid firmware uploaded

Description	
Message text:	After firmware upload and reboot the Device Server has still entered the firmware upgrade mode. This means that you have downloaded an invalid file or that the upload was incomplete
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Upgrade</u> function

#### **Details**

When the DS powers up its internal "operating system" verifies if the application firmware is loaded and correct (this is done by verifying the checksum). If the firmware is found to be corrupted the operating system checks if the <u>NetLoader</u> is present. When this is so, control is passed to the <u>NetLoader</u> so you have a chance to upload correct application firmware.

When this message is displayed this means that the firmware upload process has completed successfully and the DS was rebooted with the intention to launch the newly loaded application firmware but has emerged from reboot in the firmware upgrade mode again.

If you are sure that the firmware upgrade has completed successfully then you must have uploaded a wrong file. Firmware download page at <WEB> provides complete info on what file to choose.

#### Programmer's info:

- - -

### **Invalid IP-address**

Description	
Message text:	This IP-address is invalid. Setting it will result in the inability to access the Device Server through the network
May appear in:	<u>Auto-discovery</u> access mode; <u>Change IP</u> function

## **Details**

Certain IP-addresses are invalid in principle and should never be used. Many devices and operating systems (including *Windows*) automatically discard network packets that refer to such invalid IPs. Assigning an invalid IP to the DS can make it inaccessible over the network.

Here is the list of IP-addresses that should not be used:

- **x.x.x.0** (i.e. 0 in the last number, as in 192.168.100.0).
- x.x.x.255 (i.e. 255 in the last number, as in 192.168.100.255).
- >223.x.x.x (i.e. a number that is more than 223 in the first number, as in 224.168.100.40).

Latest firmware versions of the DS prevent such invalid IPs from being used- the DS will automatically assume a modified and correct IP-address if invalid one is set (see **IP-address (IP) setting** for more information). Older firmware versions did not have

this protection so the *DS Manager* itself also prevents invalid IP-addresses from being set.

#### Programmer's info:

IP-address is changed using the **Assign IP-address (A) command**.

### Network firmware upload aborted

Description	
Message text:	<u>Firmware upgrade</u> was aborted by the Device Server. This may be because of communications error or because you are trying to upload a wrong file
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Upgrade</u> function

## <u>Details</u>

This message indicates that the *DS manager* has aborted the upload of a firmware file. Typically, this happens when the DS has detected an error in the data being uploaded. This means that you are trying to upload an incorrect firmware file.

The firmware file you are supposed to upload into the DS depends on the DS model number and also on the way you are performing the upgrade- through the network (<u>auto-discovery</u> and <u>address book</u> modes) or through the serial port (<u>COM access mode</u>). Firmware download page at <WEB> provides complete info on what file to choose. Be sure you understand this information and select a correct firmware file.

#### **Programmer's info:**

- - -

#### New password not accepted

Description	
Message text:	Password and re-typed password do not match
May appear in:	All access modes, Settings function

#### **Details**

When you attempt to set new login password the *DS Manager* asks you to input the same password twice. This is to make sure that you know what password you have entered. This message appears when the password you have entered the first time does not match the password you have entered the second time.

## Programmer's info:

Login password is the one defined by the **Password (PW) setting** of the DS. Also see <u>authentication</u> topic.

## No response from the DS (network)

Description	
Message text:	There was no response from this Device Server. Make sure it is online, connected to the network, and (for <u>address book access mode</u> ) is being accessed correctly
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Settings</u> , <u>Upgrade</u> , <u>Initialize</u> , <u>Routing Status</u> , <u>Buzz</u> , <u>Change IP</u> functions

#### <u>Details</u>

This message indicates that the *DS Manager* has attempted to access the DS (using <u>out-of-band (UDP)</u> programming commands) but did not get any reply. The reasons for this depend on the selected access mode: see <u>troubleshooting (auto-discovery mode)</u> and <u>troubleshooting (address book mode)</u>.

#### **Programmer's info:**

- - -

## No response from the DS (serial)

Description	
Message text:	There was no response from the Device Server. Make sure it is powered, its serial port is connected to the COM port of this PC, and the Device Server is in the <u>serial programming mode</u>
May appear in:	COM access mode; Settings, Initialize functions

## **Details**

This message indicates that the *DS Manager* has attempted to access the DS through the serial connection (serial port of the DS to the COM port of the PC) but did not get any reply back. See <u>troubleshooting (COM access mode)</u> for the list of hints on why this might happen.

#### **Programmer's info:**

- - -

## **Operation cannot be executed**

<b>Description</b>	
Message text:	Requested operation cannot be completed because the Device Server is in the <u>serial programming mode</u> or the <u>network programming session</u> is in progress
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Settings</u> , <u>Upgrade</u> , <u>Initialize</u> , <u>Change IP</u> functions

#### **Details**

When you click <u>Settings</u>, <u>Upgrade</u>, <u>Initialize</u>, or <u>Change IP</u> button the *DS Manager* needs to login before it can execute requested operation (see <u>authentication</u>). Login is required even if the login password is not set and is only accepted if no programming with the same <u>priority level</u> is already in progress.

#### **Programmer's info:**

Before executing any of the operations listed above the *DS Manager* attempts to login using the **Login (L) command**. This message is displayed when the response to this command is **Rejected (R)**.

## Out-of-band (UDP) access required

Description	
Message text:	This function requires <u>out-of-band (UDP)</u> access to the Device Server. <u>Inband (TCP)</u> access is currently selected for this Device Server so the function cannot be used
May appear in:	Address book access mode; Upgrade, Routing Status functions

## <u>Details</u>

This message means that the <u>inband (TCP) access method</u> is selected for this particular address book entry. It is not possible to use the <u>Upgrade</u> and <u>Routing status</u> functions with "inband" address book entries (see function topics for an explanation).

## Programmer's info:

- - -

## Password will be disabled

Description	
Message text:	Password for this Device Server will be disabled
May appear in:	All access modes, Settings function

## **Details**

You have pressed *OK* without entering any password string. This means that no password will be set and the password protection for this DS will be disabled.

#### **Programmer's info:**

Login password is the one defined by the **Password (PW) setting** of the DS. Also see <u>authentication</u> topic.

## **Potential DHCP conflict**

Description	
Message text:	This Device Server has DHCP enabled. New IP- address may work but the use of this new IP will neither be authorized, nor noted by the DHCP server. Do you still want to continue?
May appear in:	<u>Auto-discovery</u> access mode; <u>Change IP</u> function

#### **Details**

This message is shown when the <u>Change IP</u> function is used while the IP-address of the DS appears to be configured through the DHCP (which means that **DHCP (DH) setting** is 1 (enabled) and IP-address appears to have been successfully received from the DHCP server i.e. the DS is not in the <u>IP-address not obtained</u> state)*.

Technically, the DS will work fine when you assign an IP-address manually (while the network has the DHCP service) as long as you find an unused IP-address**. The problem is that the DHCP server will not know that you have occupied this IP and may assign it to some other device in the future***.

Finally, keep in mind that the IP-address you set manually may be changed next time the DS reboots. This is because, when the **DHCP (DH) setting** is 1 (enabled), the DS negotiates its IP-address with the DHCP server each time it powers up or reboots and the DHCP server may assign a different IP-address at this time. This new IP will be saved into the **IP-address (IP) setting** thus overwriting the value you may have set.

#### **Programmer's info:**

The *DS Manager* verifies whether the IP-address of the DS is configured through the DHCP by sending the **Echo (X) command** and analysing the status of the *i* flag in the reply. If the flag is set to 'I' then this means that the DHCP is enabled and the DHCP server is actually present on the network.

* In other words, the DS Manager does not detect the presence of DHCP server directly but instead relies on the "indirect evidence" from the DS. Unfortunately, this means that the DS Manager won't be able to alert you when the DHCP server is actually present but **DHCP (DH) setting** is 0 (disabled) on the DS.

** This can always be done by PINGing different IPs on the local subnet. No reply means that the IP is probably unused.

*** Unless you have specifically banned the DHCP server from using this IP-address (this can usually be done).

#### Power up with setup button pressed

Description	
Message text:	Power the Device Server off, press and hold the <u>setup button</u> *, and power the Device Server back on while keeping the button pressed. The upgrade process will start after that
May appear in:	COM access mode; Upgrade function

#### **Details**

Powering the DS up while keeping the <u>setup button</u> pressed puts the DS into the serial upgrade mode.

#### **Programmer's info:**

- - -

* On EM100, EM120, EM200, EM202- pull the <u>MD line</u> LOW and power up while holding this line LOW.

#### Press setup button

Description	
Message text:	Press the setup button* on the Device Server
May appear in:	COM access mode; Settings, Initialize function

#### **Details**

The DS can be programmed through the serial port only when the latter is in the <u>serial programming mode</u>. To switch the serial port into the serial programming mode press the <u>setup button</u>*.

#### **Programmer's info:**

- - -

* On EM100, EM120, EM200, EM202- pull the <u>MD line</u> LOW for at least 100ms.

## Serial firmware upload failed

Description	
Message text:	Communications error was detected during the serial firmware upload. Firmware upgrade has failed
May appear in:	COM access mode; Upgrade function

## **Details**

This message means that there was some communications error while transferring the firmware file from the PC to the DS. The message does not mean that the file itself was found to be invalid. Check your serial connection (cable, baudrate, etc.) and try again.

## Programmer's info:

- - -

## Serial upgrade completed

Description

Message text:

Serial upgrade completed successfully. Switch the Device Server off and back on to start normal operation. DS <u>initialization</u> may be required after

### the upgrade

#### May appear in:

COM access mode; Upgrade function

#### **Details**

After the serial upgrade the DS is not able to reboot by itself. You need to power it off and back on again to test the newly uploaded firmware. Since the new firmware can have new or different settings that were not present on a previous one the DS may require <u>initialization</u> (watch out for the <u>error mode</u> after the DS reboots).

#### Programmer's info:

- - -

## Setting description file error

<b>Description</b>	
Message text:	Setting description file contains error(s)
May appear in:	All access modes, Settings function

#### **Details**

Setting description files (SDFs) contain the list of all settings found on a specific firmware version of the DS. During the installation SDFs are copied into the /SDF subfolder inside the target installation folder of the Device Server Toolkit (DST). This message indicates that the SDF file required to correctly display the settings *dialog* for a particular DS firmware appears to contain invalid information. This problem can be corrected by reinstalling the software.

#### Programmer's info:

- - -

## Unable to find setting description files

<b>Description</b>	
Message text:	Corrupted installation: unable to find SDF files
May appear in:	All access modes, Settings function

## **Details**

Setting description files (SDFs) contain the list of all settings found on a specific firmware version of the DS. During the installation SDFs are copied into the */SDF* folder inside the target installation folder of the Device Server Toolkit (DST). This message indicates that the */SDF* folder is empty. This problem can be corrected by reinstalling the software.

Programmer's info:

- - -

## Unexpected NetLoader error

Description	
Message text:	Unexpected <u>NetLoader</u> error. Firmware upgrade has failed
May appear in:	<u>Auto-discovery</u> and <u>address book</u> access modes; <u>Upgrade</u> function

## **Details**

The <u>NetLoader</u> is a separate firmware component that facilitates application firmware upgrades through the network. This message indicates that the <u>NetLoader</u> was entered but firmware upload could not be started because of an unexpected reply from the DS.

This message should not appear under normal circumstances. Please, contact us if the problem persists!

**Programmer's info:** 

- - -

## Unreachable IP-address

Description	
Message text:	New IP-address is unreachable
May appear in:	Auto-discovery access mode; Initialize function

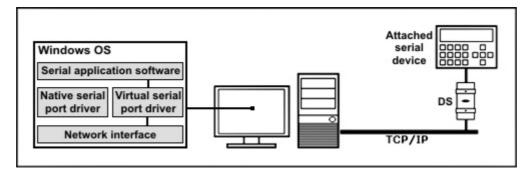
#### **Details**

After assigning new IP-address the *DS Manager* performs an automatic refresh and verifies that the DS is still online. This message appears when the DS is detected to be online but the *DS Manager* is unable to communicate with this DS using a "normal" IP addressing (see <u>broadcast access</u> for details).There are actually several reasons why this may be so- see troubleshooting (auto-discovery mode).

#### **Programmer's info:**

- - -

# VSPD and VSP Manager



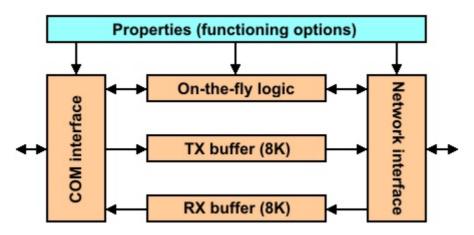

**Virtual Serial Port Driver** (*VSPD*) and **Virtual Serial Port Manager** (*VSP Manager*) are parts of the <u>Device Server Toolkit</u> (*DST*).

The *VSPD* powers **Virtual Serial Ports** (*VSPs*) that emulate "real" COM ports under *Windows OS*. The *VSP Manager* is used to add, delete, and setup *VSPs*.

The *VSPD* is an "engine" that powers **Virtual Serial Ports** (*VSPs*). To any Windows application the *VSP* "looks and feels" just like a "normal" COM port. In reality, the *VSP* transparently reroutes all data sent by the application to the Tibbo Device Server ("DS") and the serial device behind it ("attached serial device"). Likewise, all the data sent by the serial device is received by the DS and routed to the *VSP*, which, in turn, passes this data to the application. Both the software application on the PC and the serial device communicate with each other just as if they were

interconnected by a "normal" serial cable, without knowing that there is a network in between. This allows you to network-enable your existing serial system without changing the serial device itself or its PC software.




The *VSPD* is a driver and is running in the very "guts" of the *Windows OS*. Its presence is only manifested by the *VSPs* available to *Windows* applications.

The <u>VSP Manager</u> is an application that allows you to add, remove, and setup VSPs. The VSPD and the VSP Manager are different entities (one is a *driver*, another onea *setup utility*). This *Manual* offers combined description of the two and all VSPD features are explained "through" the VSP Manager.

Closely related to the work of the *VSPD* is the <u>Port Monitor</u>, another member of the *DST*, that is used to log the activity of the *VSPs*.

# How VSP works

When designing the *VSPD* we have attempted to emulate the work of a standard serial port driver as closely as possible. All system calls supported by the COM driver were carefully ported into the *VSPD* and the behavior of the *VSPs* closely mimics that of COMs.



#### Shown above is a VSP block diagram:

- **COM interface** presents an application interface, compatible with the standard COM port driver. *Windows* applications are not able to tell the difference between a *VSP* and a regular COM port.
- **TX and RX buffers** (8KBytes each) are used to pass the data between the application and the DS. It is noteworthy that *VSP* operation is fully asynchronous, and this is *different* from the operation of a standard COM. When the application "writes" the data into the *VSP* the data is stored into the TX buffer and the control is returned to the application immediately, not when this data is actually sent out (as is the case with COM ports). This subtle difference has important

implications- see <u>Tx error handling</u>.

- **Network interface** communicates (through the TCP/IP network) with the target DS. The *VSP* transparently establishes and accepts data connections with/from the DS as needed.
- **On-the-fly logic** (when enabled) is responsible for adjusting communications parameters of the serial port on the DS to the requirements of the application. For example, if the application wants the serial port to run at 19200 bps a special <u>on-the-fly command</u> will be sent to the DS telling it to change the serial port baudrate to 19200. Thus, the DS serial port functions just like the COM and the PC!
- **VSP properties** define different aspects of VSP operation. The properties are stored in the system registry and edited using the <u>VSP Manager</u>.

# **VSP Manager**

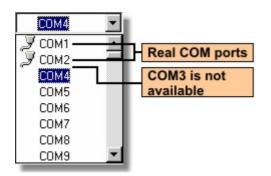
*VSP Manager* is used to add, remove, and setup *VSPs*. Shown below is the screenshot of the *VSP Manager's main window* and the *VSP properties dialog* for one of the *VSPs*. The *VSP properties dialog* has two tabs:

- **General properties tab** (shown on the screenshot) provides a set of "main" controls that guide *VSP* operation. Click on the screenshot area to jump to the related topic or select the topic from the list under the screenshot.
- **Outbound packets tab** (discussed in a separate topic) provides several options that define how the *VSP* combines the data (sent by the application) into the network packets and when these packets are sent out to the DS.

<b>e</b> vs	P Manager - V3.	12		_ 0 ×	
3	Virtual Serial Port (C	OM3)		Add	
		/SP list	-	Remove	
Ι.		or not	_	Edit	
1	Properties: VSP				×
	General propertie	© Outbound packets			
	VSP name:	COM2 -	Tx error handling:		•
		📕 Enable data logging (	in Port Monito	я)	
3	-Networking -				
	Transport protocol:	TCP 💌	Routing mode:	Fullent	•
	On-the-fly commands:	Out-of-Band	Connection mode:	On data	
	Connection timeout:	5	Listening port:		
	Destination -				
	Destination mode:	Single destination			
		Enable MAC> IP m	apping		
	IP-address:	192 . 168 . 100 . 9	94 Port	1001	
		Select Dev	ice Server fro	m the list	
	Load	Save		ОК	Cancel

# The *main window* and the *properties dialog (general properties tab)* have the following areas and controls:

- **VSP list.** The list shows all VSPs currently found on your PC.
- Add, Remove, and Edit buttons are used to add VSPs, delete VSPs, and edit VSP properties. Clicking Add or Edit brings up the VSP properties dialog shown on the screenshot above. You can also open the dialog by double-clicking on the VSP in the VSP list.
- **VSP name drop-down box** selects the port name that will be associated with this *VSP* (i.e. "COM3", etc.).
- <u>Tx error handling drop-down box</u> defines what the *VSP* will do when it is unable to send the data to the DS and the Tx buffer becomes full: discard the data or prompt the User.
- **Enable data logging option.** Another software component- the <u>Port Monitor</u>has a <u>Hex dump</u> feature that allows you to monitor data traffic through the *VSP*. You must enable this option for the feature to work (this will allocate a memory buffer through which the dump will "grab" the data).
- **Transport protocol drop-down box** defines which transport protocol- TCP/IP or UDP/IP will be used for data communications with the DS.
- On-the-fly commands drop-down box disables or enables the generation of on-the-fly commands, used to adjust the serial port parameters on the DS as needed by the application software (that uses the VSP). There is also a choice of how the on-the-fly commands will be sent when enabled (as <u>out-of-band</u> or <u>inband</u> commands).
- <u>**Connection timeout parameter**</u> defines after how many minutes of inactivity (no data transmitted across the data connection between the *VSP* and the DS) the current data connection will be aborted.
- **<u>Routing mode drop-down box</u>** defines whether the *VSP* will accept incoming connections (passive opens) and/or establish outgoing connections (perform active opens).
- <u>Connection mode drop-down box</u> defines when the *VSP* will attempt to establish an outgoing connection to the destination: right after the *VSP* is opened by the application or when the application sends the first data.
- **Listening port parameter** defines the listening port that will be associated with this *VSP*. The *VSP* will be accepting incoming connections (passive opens) on this port (when allowed by the routing mode).
- **Destination mode drop-down box** offers two destination modes that define how the *VSP* will choose its destination DS: a simple <u>single destination mode</u> that targets one DS and a more complex <u>multi-destination mode</u> that makes the *VSP* switch between several Device Servers basing on the outgoing data sent by the application.

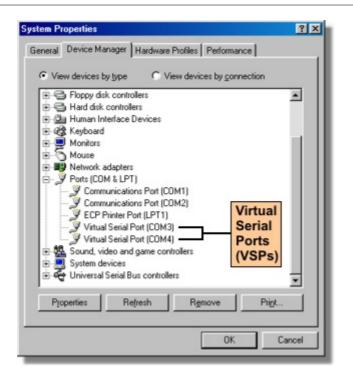

## **VSP** name selection

**VSP** name drop-down box selects the port name that will be associated with this VSP.

The number of ports you can have under *Windows* is virtually unlimited. The *VSP Manager* lets you create any port in the range between COM1 and COM255*.

There are no rules on what name to choose, just make sure that you pick the name that can be selected in the application software you plan to use this *VSP* with. Most

programs provide a limited selection of ports (typically, up to COM2 or COM4). Therefore, choosing "COM100" wouldn't be suitable as you will not be able to select this *VSP* in such software.




The VSP name drop-down box shows the list of available port names. On the screenshot above COM3 is not listed- this happens when the VSP with this name already exists. Notice, however, that ports COM1 and COM2 are not excluded from the list and are marked with icons identifying them as "real" COMs**. Even though these port names are "occupied" the VSP Manager can still "grab" them. For example, if you select COM1 the VSP Manager will automatically substitute a standard COM port driver with the VSPD and assign the name "COM1" to this VSP. From this moment on the COM1 will seize working as a regular COM and will start working as a VSP. Substitution may be necessary when you are dealing with an old application software that only provides a choice of COM1 and COM2 which are usually occupied by real COMs.

When you delete the *VSP* that substituted a standard COM port the *VSP Manager* will attempt to restore the original driver. This *mostly* works but on some systems you may encounter problems (especially under *Windows ME*). We have conducted an extensive "research" into the port substitution, only to conclude that it just doesn't work reliably on all systems!

We recommend that you do not use port substitution unless absolutely necessary!

All VSPs appear under the Ports section of the device manager's device list (Control Panel--> System Properties--> Device Manager)***:



* We could extend the number even further but feel that the current range is sufficient for all practical purposes.

** This is system-dependent. Some modern PCs don't have any real COMs.

*** VSP properties cannot be edited from within the device manager

# Tx error handling

This selection defines how the VSP will behave in case its TX buffer becomes full and the VSP is unable to send the data to the DS (within 5 seconds). This can happen when the TCP transport protocol is used, the TCP connection with the DS is broken (or cannot be established) and the application software keeps sending out the data*.

## There are two choices:

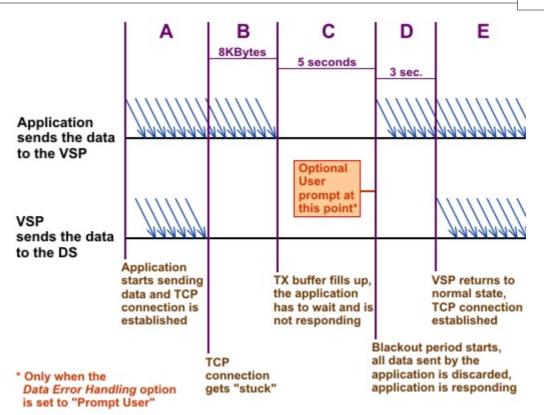
Auto-discard	If the TX buffer is full and the <i>VSP</i> is unable to send any part of the data within 5 seconds then the <i>VSP</i> will abort current TCP connection, discard all data in the TX buffer, report to the application that the data has been successfully sent out, and ignore (discard) all subsequent data sent by the application for another 3 seconds- this is called a "blackout period". At the end of the "blackout period" the <i>VSP</i> will start reacting to the data in a normal way. Yes, this means that some part of the data will be lost but this also means that the User will have a chance to interact with the application (for example, switch it off).
Prompt user	When the 5-second time elapses the VSP will show a message telling the User that the data transmission has failed and that two choices are possible- <i>retry</i> or <i>abort</i> . If the User chooses <i>retry</i> the VSP will try to resend the data in the buffer for another 5 seconds. If the User chooses <i>abort</i> the VSP will discard the data and start the 3-second "blackout period".

The first option is selected by default and should be used whenever possible, as it provides a fully automatic *VSP* recovery from all communication problems. The second option requires User input and is typically used temporarily, for data connection troubleshooting.

See <u>more info on the Tx buffer overflows</u> if you want to understand why the *VSP* handles data error as described above.

* Such a situation is impossible with UDP since this protocol doesn't have any "feedback mechanism" that would inform the sender of any problems or bottlenecks on the receiving end.

## More info on the Tx buffer overflows


Understanding why the *data error handling option* exists requires an explanation of how a standard COM driver works.

One of little known (and very ridiculous aspects) of the *Windows OS* is the way the data passing from the application to the serial port driver is arranged. Under *Windows*, after the application sends a portion of data to the serial port it cannot continue its execution immediately but instead has to wait until this data is actually sent out (through the hardware serial port). What that means is, if the serial port driver cannot send out the data this will halt the application too! The application will literally appear to be hanged up, it will not respond to your clicks, and the only way to exit it will be through <CTRL>+<ALT>+<DEL>.

The *VSPD* solves this problem (at least partially) by making *VSP* operation asynchronous (this has been already mentioned in <u>how VSP works</u>). With *VSP*, the application doesn't have to wait until the data it sends is actually delivered to the DS. When the *VSP* receives Tx data from the application it simply puts this data into the Tx buffer and returns control back to the application*.

Unfortunately, there is one situation when the application will still have to wait- this is when the TX buffer becomes full. In this case the *VSP* won't be able to accept the data from the application immediately- the application will have to wait until enough space is freed in the Tx buffer to put in the new data. To the User this will look as if the application has "hanged up". Since this waiting can be indefinite we have devised a protective mechanism that prevents the *VSP* from hanging the application.

*VSP* operation under these conditions is illustrated by a diagram below:



- **In phase A** the application starts sending the data to the *VSP*, the *VSP* establishes a TCP connection and the data is being sent to the DS.
- **In phase B** the TCP connection gets stuck (because the DS is suddenly switched off, temporary malfunction on the network, etc.). The data sent by the application starts accumulating in the Tx buffer. The application is still responding.
- **In phase C** the Tx buffer becomes full and the application appears to hang upthis is because the *VSP* is making it wait since the data the application wants to send cannot be put into the Tx buffer. The *VSP* starts counting a 5-second timeout period. If, within this period, the *VSP* is unable to send out any portion of the data in the buffer (not even a single byte) the *VSP* considers this transmission to have failed and takes the following actions:
  - The TCP connection is aborted;
  - All data in the Tx buffer is discarded;
  - The data that the application was waiting to pass to the VSP is discarded also;
  - The application is told that this data has been sent out- this allows the application to continue running;
- At the end of **phase C** the *VSP* takes an action basing on the selected T*x* error handling option:
  - If the *Tx error handling* is set to "auto-discard" the *VSP* proceeds to **phase D**;
  - If the *Tx error handling* is set to "prompt user" the *VSP* shows a message asking the User to either *retry* (the *VSP* will go back to **phase C**) or *abort* (the *VSP* proceeds to **phase D**).
- **In phase D**, called the "blackout period", the *VSP* is discarding all data received from the application without trying to send this data to the DS. This means that all data send by the application during this period is lost but this also means, that the application is responding to the User input, so the User has a chance to switch the application off, stop the data transmission, or take some other

corrective action.

• **In phase E**, when the 3-second "blackout" period is over, the *VSP* returns to a normal state and starts processing the data as usual (if the application sends the data the *VSP* attempts to establish a TCP connection, etc).

If the fact that the *VSP* simply discards the data under certain circumstances seems strange to you consider that 99% of all serial communications use some sort of command-reply protocols, data retransmissions mechanisms, etc. Stubbornly trying to put through every bit of data would actually harm the operation of such systems! It is much better to just get rid of the old data in order to be able to process the "current" one.

As an example, imagine a system in which the application software is constantly polling a serial device for data. Once the TCP connection gets stuck (beginning of **phase B**) the application stops getting any responses to its polls but often still keeps sending out its polling commands. Therefore, when the buffer fillies up (beginning of **phase C**), the data in it consists entirely of polling commands! Not only the storage of these commands is useless, but it also prevents you from interacting with the application.

* Once again, this is different from the standard COM port driver that makes the application wait until the data is actually sent out (in case of VSP this would have read "delivered to the DS").

## **Transport protocol**

**Transport protocol drop-down box** selects which communications protocol-TCP/IP or UDP/IP will be used by the *VSP* for data communications with the DS.

For the data connection with the DS to work the same transport protocol must be selected on the DS side- see the **Transport Protocol (TP) setting**.

Unless you have a specific reason why the UDP should be used (very rare!) we recommend you to stick to the TCP/IP. The TCP/IP is a "reliable delivery" protocol that makes sure that no data is lost "in transit" between the *VSP* and the DS. The UDP, on the contrary, does not guarantee data delivery.

Some considerations and additional info on the TCP and UDP implementation in the *VSP* can be found in the <u>next topic</u>.

## Additional info on UDP and TCP connections

## **UDP data connections**

The notion of data connection is native to TCP/IP since this is a connection-based protocol. UDP/IP, however, is a connection-less protocol in which all packets (UDP datagrams) are independent from each other. How, then, the term "data connection" applies to the UDP transport protocol?

With UDP transport protocol true data connections (in the "TCP sense" of this term) are not possible (hence, parenthesis around the word "connection"). The *VSP*, however, attempts to mimic the behavior of TCP data connection whenever possible. Follows is the detailed description of UDP "connections" and their similarities and differences with TCP connections.

**Incoming "connections"*.** There is no connection establishment phase in UDP so an incoming UDP "connection" is considered to be "established" when the first UDP

packet is received by the *VSP* (on the <u>listening port</u>). Similarity with TCP is in that after having received the packet from the DS the *VSP* knows who to send its own UDP packets to.

**Outgoing "connections"**.** The VSP establishes outgoing UDP connection by sending a UDP datagram to the <u>targeted destination</u>. If there is a data that needs to be transmitted the VSP sends the first UDP datagram with (a part of) this data. If there is no immediate data that needs to be transmitted to the DS the VSP sends the first UDP datagram of zero length (this happens when the <u>connection mode</u> is set to "connect immediately"). The purpose of this is to let the other side know the IP-address of the VSP (PC it is running on), as well as the data port currently used by the VSP.

**Data transmission and destination switchover.** Once the "connection" is established the *VSP* and the DS exchange the data using UDP datagrams. The difference with TCP is that if another DS sends a datagram to the *VSP*, then the *VSP* will interpret this as a new incoming connection*, forget about the first DS and start sending its own UDP datagrams to the second one. In other words, the *VSP* will always communicate with the "most recent sender". Such behavior is not possible in TCP, in which a third party cannot interfere with an existing connection.

**"Connection" termination.** There is no connection termination phase in UDP so *VSP* "terminates" its UDP connections by forgetting about them and the only event that can trigger UDP "connection" termination (except for the closing of the *VSP*) is <u>connection timeout</u>.

Local port used by the VSP depends on the selected routing mode:

- **In the server routing mode** the *VSP* sends the UDP datagrams from an "automatic" port selected by the OS;
- In the server/client and client routing modes the VSP sends and receives UDP datagrams through the port, defined by the <u>listening port parameter</u>.

# **TCP data connections**

**Only one connection at a time.** TCP protocol stack on the PC is capable of supporting thousands of concurrent TCP connections but the *VSPD* strictly enforces that only a single TCP connection exists for each *VSP* at any time. This is because the serial port is not a shared media and allowing, say, two Device Servers to connect to the same *VSP* would have created a data chaos***. Allowing only a single connection at a time follows a "serial port culture" of "one serial port- one application"! If the *VSP* is already engaged in a data connection with the DS and another DS attempts to establish a connection to this *VSP* then this DS will be rejected.

**Separate ports for outgoing and incoming connections.** The *VSP* establishes its outgoing connections** from an "automatic" port selected by the OS. Each time such outgoing connection is established the source port number on the *VSP* side will be different. The *VSP* accepts incoming connections* on a fixed listening port, whose number is defined by the <u>listening port parameter</u>. When the incoming connections are not allowed the listening port is closed.

* Assuming that incoming connections are allowed (i.e. the <u>routing mode</u> is either "server", or "server/client").

** Assuming that outgoing connections are allowed (i.e. the <u>routing mode</u> is either "client", or "server/client").

*** What if both Device Servers started sending the data to the VSP at the same time? Then the PC application using the VSP would have received a mix of data consisting of an input from both Device Servers! And if two Device Servers were

connected to the same VSP and the PC application needed to send out the data then which DS of the two the VSP would have to send this data to?

# **On-the-fly commands**

<u>On-the-fly</u> commands are used to change the serial port configuration of the DS as needed (i.e. "on the fly"). Serial port configuration made through the on-the-fly commands overrides the permanent one, defined by the <u>serial port settings</u> of the DS. The difference between the changes made using on-the-fly commands and changes made through altering DS settings is that, unlike serial settings, on-the-fly commands have immediate effect and do not require the DS to be rebooted in order for the new values to be recognized.

With on-the-fly commands enabled, the serial port of the DS is always setup as required by the PC application that communicates with this DS through the *VSP*. When the PC application opens the *VSP* (or some communications parameters are changed) the application informs the *VSP* about required changes* and the *VSP* relates this information to the DS by sending on-the-fly commands.

Additionally, on-the-fly commands are used by the *VSP* to control the RTS and DTR outputs of the DS serial port. The status of the CTS and DSR input of the DS serial port can be passed to the *VSP too-* this is done using so-called "notification messages". For more information see <u>handling of RTS, CTS, DTR, and DSR signals</u>.

#### **On-the-fly commands drop-down box provides four choices:**

Disabled	On-the-fly commands are not sent at all, so the serial port of the DS will use "permanent" serial port configuration defined by the <u>serial port settings</u> . In this mode it doesn't matter what serial port parameters are set in the PC software application- the DS will not be aware of them!
Out-of-band	On-the-fly commands are enabled and sent in the form of <u>out-of-band (UDP)</u> commands. <u>On-the-</u> <u>fly commands (RC) setting</u> of the DS must be programmed to 1 (enabled) for the out-of-band on-the-fly commands to be accepted.
Inband	On-the-fly commands are enabled and sent in the form of <u>inband (TCP)</u> commands. <u>On-the-</u> fly commands (RC) setting of the DS must be programmed to 1 (enabled) for the on-the-fly commands to be accepted. Additionally, there are some other programming steps that must be performed before the DS will recognize inband commands- see preparing the DS for inband access.
Disabled (w FF esc.)	On-the-fly commands are not sent, but the VSP treats all incoming and outgoing data as if <i>inband</i> mode was used (i.e. it doubles all "escape" characters (ASCII code 255) in

the data sent by the application and expects all escape characters to be doubled in the data stream sent by the DS). See <u>disabled (with FF escape) mode of the VSP</u> for details. In general, we recommend you to keep on-the-fly commands enabled (unless there

are some special reasons preventing you from doing so). Enabling on-the-fly commands keeps the serial port setup of the DS "in sync" with the requirements of the software application using the *VSP*.

# As for choosing between out-of-band and inband modes, follow these recommendations:

Out-of-band commands work most of the time, especially when the PC (running *VSP*) and the DS are located on the same network segment**. Out-of-band commands may not work very well or not work at all for the remote Device Servers located behind the routers, firewalls, etc***. This is because:

- The routers are known to "drop" UDP datagrams (on which out-of-band on-the-fly commands are based) under heavy network traffic.
- UDP traffic is banned by the firewalls of many networks (hence, out-of-band onthe-fly commands cannot be used at all). If you want out-of-band on-the-fly commands to work then your network must allow UDP traffic to port 65535!

If you encounter one of the above situations then you should use inband on-the-fly commands or not use on-the-fly commands at all!

There is one other reason why out-of-band commands may not be suitable- this is when on-the-fly commands must be synchronized with the data sent by the *VSP*. For more information see <u>synchronization issues</u>.

On-the-fly command-related activity of the *VSP* is best observed using the <u>Port Monitor</u>, as all on-the-fly commands as well as the result of their execution are logged- see <u>next section</u> for details.

* This is standard for Windows COM ports.

** The definition of the network segment implies that there are only network hubs (and no routers, bridges, firewalls, etc.) between the PC and all other devices on the segment.

*** Here we touch on a very complicated subject. Modern routers offer a bewildering array of setup options. We will attempt to cover this in details in our upcoming white papers.

# When the VSP sends on-the-fly commands

This topic details when and what on-the-fly commands the VSP sends to the DS.

At certain times the *VSP* sends an entire "parameter block" of required communications parameters to the DS:

- Parameter block is sent when the *VSP* is just opened, except when the <u>routing mode</u> is "server".
- Additionally, parameter block is sent each time the data connection is established (no matter whether this was an incoming or outgoing connection).

Parameter block includes all communications parameters needed by the serial port, such as the baudrate, parity, etc.

In addition to sending parameter blocks the *VSP* also sends individual commands whenever some parameter is changed within the application. For example, if the User chooses a different baudrate (while the application is already running and the *VSP* is opened) the *VSP* won't send out entire parameter block again but will instead send just the on-the-fly command to change the baudrate of the DS.

Such individual on-the-fly commands are sent immediately after the serial communications parameters are changed in the software application, except for the case when the <u>routing mode</u> is "server" and no data connection is established at the moment. In this case the *VSP* will have to wait until it receives an incoming connection, and this will trigger an entire parameter block to be sent, as described above.

Here is an example log from the <u>Port Monitor</u> detailing one "cycle" of the *VSP* operation (out-of-band on-the-fly commands are enabled, <u>routing mode</u> is not

"server"):

```
--- application is started ---
12/15/03 14:22:47 - COM3 (INFO): Port opened
--- beginning of parameter block (this block is sent because the VSP has been opened) ---
12/15/03 14:22:47 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: get DSR pin status...succes
12/15/03 14:22:47 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: get CTS pin status...succes
12/15/03 14:22:47 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success
12/15/03 14:22:47 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set RTS to high...success 12/15/03 14:22:47 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set baud rate to 38400 bps...success
12/15/03 14:22:47 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set parity to none...succes
12/15/03 14:22:47 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set data bits to 8 bits...success
12/15/03 14:22:47 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set flowcontrol to RTS/CTS...success 12/15/03 14:22:47 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: enabling line change notification fc
DSR...success
--- end of parameter block ---

--- connection is established (i.e. because the application sends data) ---
12/15/03 14:22:54 - COM3 (INFO): Established TCP connection with node 192.168.100.92:1001
--- beginning of parameter block (this block is sent because the connection has been established)
12/15/03 14:22:54 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: get DSR pin status...succes
12/15/03 14:22:54 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: get CTS pin status...succes
12/15/03 14:22:54 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/15/03 14:22:54 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set RTS to high...success
12/15/03 14:22:54 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set baud rate to 38400 bps...success
12/15/03 14:22:54 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set parity to none...succes
12/15/03 14:22:54 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set data bits to 8 bits...success 12/15/03 14:22:54 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set flow control to RTS/CTS...success
12/15/03 14:22:54 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: enabling line change notification fc
DSR...success
--- end of parameter block ---
--- the following commands are sent in response to the User changing the baudrate within the
application ---
12/15/03 14:22:56 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set baud rate to 19200 bps...success
12/15/03 14:22:58 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set baud rate to 9600 bps...success
12/15/03 14:22:59 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set baud rate to 19200 bps...success
12/15/03 14:23:00 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set baud rate to 9600 bps...success
--- application is closed ---
12/15/03 14:23:02 - COM3 (INFO): TCP connection closed
12/15/03 14:23:02 - COM3 (INFO): Port closed
```

A slightly different behavior is observed when the inband mode is selected for onthe-fly commands. Since inband commands are passed within the TCP data connection, the *VSP* establishes such a connection in case it needs to send on-thefly command(s) and no connection is established at the moment. Again, this is only done when the <u>routing mode</u> is not "server".

Here is another output, this time for inband on-the-fly commands (<u>routing mode</u> is not "server"):

```
--- application is opened ---
12/17/03 09:30:13 - COM3 (INFO): Port opened
--- TCP connection is established because the VSP needs to send a parameter block ---
12/17/03 09:30:13 - COM3 (INFO): Established TCP connection with node 192.168.100.92:1001
--- beginning of parameter block ---
12/17/03 09:30:13 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: get DSR pin status...succes
12/17/03 09:30:13 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: get CTS pin status...succes
12/17/03 09:30:13 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success
12/17/03 09:30:13 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set RTS to high...success
12/17/03 09:30:13 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set baud rate to 38400 bps...success
12/17/03 09:30:13 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set parity to none...succes
12/17/03 09:30:13 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set data bits to 8 bits...success
12/17/03 09:30:13 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set flowcontrol to none...succes
12/17/03 09:30:14 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: (unknown)...success
12/17/03 09:30:14 - COM3 (INFO): Line status change notification: DSR:low CTS:low
--- end of parameter block --
```

--- connection is aborted because no data is being transmitted across this connection 12/17/03 09:31:14 - COM3 (INFO): TCP connection aborted by remote node ------ flow control mode must be changed, and the VSP establishes the TCP connection again 12/17/03 09:34:00 - COM3 (INFO): Established TCP connection with node 192.168.100.92:1001 12/17/03 09:34:00 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set flowcontrol to RTS/CTS...success

The *VSP* employs a retry mechanisms that makes up to 3 additional attempts in case no reply is received from the DS. If, after 4 attempts there is still no reply the *VSP* disables on-the-fly command generation:

12/16/03 10:55:58 - COM3 (WARNING): "On-the-Fly" command for 192.168.100.92: set baud rate to 9600 bps...timed out, still trying... 12/16/03 10:56:01 - COM3 (WARNING): "On-the-Fly" command for 192.168.100.92: set baud rate to 9600 bps...timed out, still trying... 12/16/03 10:56:04 - COM3 (WARNING): "On-the-Fly" command for 192.168.100.92: set baud rate to 9600 bps...timed out, still trying... 12/16/03 10:56:04 - COM3 (ERROR): "On-the-Fly" command for 192.168.100.92: set baud rate to 9600 bps...timed out, still trying... 12/16/03 10:56:04 - COM3 (ERROR): "On-the-Fly" command for 192.168.100.92: set baud rate to 9600 bps...timed out

No additional attempts are made if the DS denies or rejects any on-the-fly command:

12/16/03 11:03:33 - COM3 (ERROR): "On-the-Fly" command for 192.168.100.92: get DSR pin status...access denied 12/16/03 11:03:34 - COM3 (INFO): "On-the-Fly" commands disabled (until port opened next time

#### Handling of RTS, CTS, DTR, and DSR signals

The status of RTS, CTS, DTR, and DSR lines can be exchanged between the *VSP* and the DS. This means that the *VSP* can remotely control the state of RTS and DTR outputs of the serial port on the DS while the DS can notify the *VSP* of the state changes on the CTS and DSR inputs of its serial port. This topic provides detailed information on the subject.

#### **RTS and DTR outputs of the DS serial port**

Whenever the application requires the state of the RTS or DTR line to be changed the *VSP* sends an appropriate on-the-fly command to the DS. Here is how this is reflected in the <u>Port Monitor</u>:

12/16/03 09:46:24 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set RTS to low...success 12/16/03 09:46:27 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set RTS to high...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to low...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to low...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to low...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to low...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to low...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/03 10:05:06 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/16 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/16 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/16 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/16 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...success 12/16/16 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set DTR to high...succe

The DS always replies to each such command with the **A (OK) status code**^{*}. Whether or not the DS *actually processes* the command depends on the current DS setup:

If the application is running with RTS/CTS flow control disabled (which means the *VSP* has sent a **Flow Control (FC) parameter** of 0) the DS does process all RTSrelated on-the-fly commands. If the application is running with RTS/CTS flow control enabled (the *VSP* has sent a **Flow Control (FC) parameter** of 1) the DS ignores all RTS-related on-the-fly commands (but still replies with **A**). This is because in this mode the DS controls the RTS line on its own and the function of the RTS line is to regulate the flow of data from the attached serial device into the serial port of the DS (also see **Flow Control (FC) setting**).

As for the DTR line, whether or not the DS actually processes DTR-related on-the-

fly commands depends on the **DTR Mode (DT) setting**. If this setting is 0 (idle) the DS does process all DTR-related on-the-fly commands. If this setting is 1 (connection mode) the DS ignores all such commands. This is because in this mode the DS controls the DTR line on its own and the function of the DTR line is to reflect current status of the data connection.

#### CTS and DSR inputs of the DS serial port

Changes in the states of CTS and DTR inputs of the DS serial port are delivered to the *VSP* through **Notification (J) messages**. For the notifications to work the DS must first be informed the status change of which lines should be reported to the *VSP*. This is done through the **Notification Bitmask (NB) parameter**. Depending on the flow control mode selected by the application the *VSP* sets the bitmask in one of the two ways:

- If the application is running with RTS/CTS flow control disabled, the VSP programs the DS to react to the changes of both the CTS and DSR lines.
- If the application is running with RTS/CTS flow control enabled, the VSP programs the DS to react to the changes of the DSR line only. This is because when the flow control is enabled the CTS line is handled on the DS "level"- it is used to regulate the flow of serial data from the DS into the serial device.

Since the bitmask depends on the selected flow control it is re-programmed each time the application changes the flow control mode:

--- application disables RTS/CTS flow control so the bitmask is set to include the CTS line ---12/16/03 10:10:18 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set flowcontrol to none...succes 12/16/03 10:10:18 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: enabling line change notification fc DSR, CTS...success

--- application enables RTS/CTS flow control so the bitmask is set to exclude the CTS line ---12/16/03 10:10:20 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: set flowcontrol to RTS/CTS...success 12/16/03 10:10:20 - COM3 (INFO): "On-the-Fly" command for 192.168.100.92: enabling line change notification fc DSR...success

#### Additional considerations concerning notification messages

Just as on-the-fly commands can be sent using out-of-band or inband access method, notification messages can also be sent out-of-band or inband. When the **Inband (IB) setting** of the DS is programmed to 1 (enabled) the DS sends inband notifications (otherwise, the DS sends out-of-band notifications).

For the inband notifications to work no additional DS setup is required (past the pre-programming needed to make the DS accept inband commands in principle- see <u>preparing the DS for inband access</u>).

#### For the out-of-band notifications to work properly the

**Notification Destination (ND) setting** of the DS must be programmed to 0 (last known port). In this case the DS will send its notifications to the port from which it last received an on-the-fly command. Because the *VSP* sends on-the-fly commands from an "automatic" port the DS has no way of knowing beforehand what this port number will be. Therefore, the DS won't send notifications unless it receives at least one on-the-fly command from the *VSP*. This is not a limitation since on-the-fly commands are generated by the *VSP* as soon as it is opened and/or connection is established (see when the VSP sends on-the-fly commands).

#### There are certain limitations associated with notification messages:

• Notifications are only generated when the data connection is established between the *VSP* and the DS. This is different from on-the-fly commands which can be sent by the *VSP* at any time, even when the data connection is not established yet.

- The change in the state of the CTS or DSR input of the DS serial port is recognized with a 0.5 second delay. That is, the line must change the state and remain in this new state for at least 0.5 second for this change to be detected and notification to be sent to the *VSP*.
- * That is, if on-the-fly commands are enabled in principle.

#### Synchronization inssues for on-the-fly commands

This topic details a subtle difference between the timing of out-of-band and inband on-the-fly commands (relative to the data being sent by the *VSP*).

In certain serial systems transmission of data by the PC is synchronized with toggling of RTS or DTR outputs (or with changing of the serial port setup). Consider the following two examples:

**Example 1:** The RTS line is used to mark the beginning and the end of the data transmission by the PC.

The diagram of such data transmission is shown below. When the PC wants to send out the data it does the following:

- Sets the RTS line to HIGH.
- Transmits the data.
- Sets the RTS line to LOW.

The positive pulse on the RTS line is said to envelope or encapsulate the data.

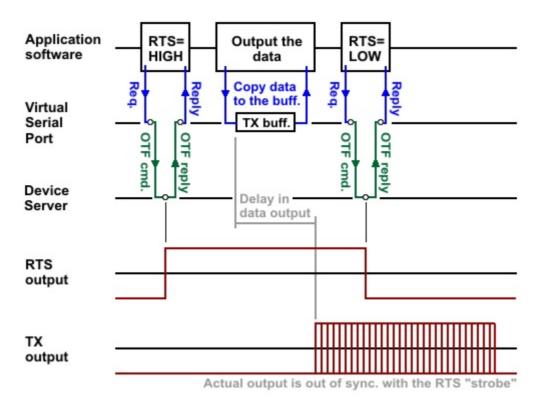
RTS output	
TX output	

**Example 2:** *mark* and *space* parity bits are used by the serial device to distinguish between the *address* and *data* bytes transmitted by the PC.

In most RS485 systems (where there are multiple serial devices attached to the serial bus) the PC needs to select a particular "node" it wants to communicate with by transmitting the address of this node. Such systems often use the parity bit to distinguish between the node address and the actual data, i.e. (parity= *mark* means an address byte, parity= *space* means a is data byte, or vise versa).

Since a standard COM driver does not allow the application software to control the parity bit directly, such software uses the following algorithm to transmit the node address followed by the data:

- Change the parity to mark.
- Send the node address.
- Change the parity to *space*.
- Send the data for this node.


The point here is that changes in the parity mode must be synchronized with the data being sent out.

#### How the use of VSP affects synchronization

As explained in <u>Tx error handling</u>, the operation of the *VSP* is more asynchronous than that of a standard serial port. When the application sends out the data the *VSP* just puts this data into the Tx buffer and returns control back to the application. To the application this means that the data has been sent out. Obviously, this is not so and there will be a certain delay before this serial data actually comes out of the serial port on the DS side.

Out-of-band commands (such as the command that tells the DS to change the state of the RTS line) are sent separately from the data. For example, when the application tells the *VSP* to change the state of the RTS line the *VSP* sends a required out-of-band command immediately.

For the example 1 the above means that the pulse on the RTS line will be completely out of sync with the serial data itself (the diagram below illustrates this). For the example 2 this means that the switching of the parity mode will occur at wrong (and unpredictable) times and, therefore, there is no guarantee that the address byte will be output with mark parity bit and the data byte will be output with space parity bit!



# The solution

Fortunately, there is a solution to this problem- use inband mode when trying to achieve full synchronization between the Tx data and on-the-fly commands! Because inband on-the-fly commands are mixed into the data stream itself there is no chance that these commands will somehow "pass over" the data. The DS will receive the data and corresponding on-the-fly commands in exactly the same order as generated by the application.

# Disabled (with FF escape) mode of the VSP

Some comments should be made on this mode of the *VSP*. The mode exists so that you could prevent the *VSP* from sending on-the-fly commands to the DS while at the same be able to program the DS from the <u>DS Manager</u> using <u>inband access method</u>.

<u>Inband</u> programming is usually used when <u>out-of-band</u> access is not possible. For the inband programming to work the DS must be <u>configured for inband access</u>. In this case the DS treats all data characters with ASCII code 255 (FF Hex) in a special way: all ASCII code 255 characters sent from the *VSP* to the DS must be doubled, or the DS will mistake these data characters for a beginning of inband commands (see <u>inband commands</u> for details). In the *inband on-the-fly* mode the *VSP* does this "doubling" but it also sends on-the-fly commands. If you don't want the on-the-fly commands to be sent then use the *disabled (with FF escape)* onthe-fly mode- the *VSP* will refrain from sending any on-the-fly commands but will still "double" all outgoing FF characters. Likewise, the *VSP* will correctly handle all "double" FF characters sent by the DS.

# **Connection timeout**

**Connection timeout parameter** sets the timeout (in minutes) for the data connections between the *VSP* and the DS. If no data is transmitted across the data connection (TCP or UDP) for a specified number of minutes the *VSP* aborts the connection.

Setting connection timeout parameter to 0 disables the feature and the connection is never closed on timeout.

Notice, that this feature will work even when the <u>connection mode</u> is set to "immediately". When the timeout comes the *VSP* closes the connection first and immediately reopens it (timeout counter is reloaded). This provides additional reliability since hanged connections are automatically "repaired".

Connection timeout parameter works like the **<u>Connection Timeout (CT) setting</u>** of the DS.

# **Routing mode**

**Routing mode** defines whether the *VSP* will accept incoming connections (passive opens) and/or establish outgoing connections (perform active opens).

# *Routing Mode drop-down box* provides three choices:

Server	Only incoming connections are accepted, the VSP never attempts to establish an outgoing connection to the DS. There is no restriction on which DS can connect to the VSP- connection from any IP-address will be accepted as long as the DS is connecting to the correct <u>listening port</u> using correct <u>transport protocol</u> .
Server/client	Both incoming and outgoing connections are allowed. Outgoing connections are established with the destination, specified in the <u>destination section</u> of the <i>dialog</i> . Exactly when the <i>VSP</i> attempts to establish an outgoing connection is defined by the selected <u>connection mode</u> . Incoming connections are accepted from any IP-address, just like with the server routing mode.
Client	Only outgoing connections are allowed, the VSP rejects all incoming connections.

Routing mode option works like the **Routing Mode (RM) setting** on the DS.

# **Connection mode**

**Connection mode** defines when the *VSP* attempts to establish an outgoing connection to the destination, specified in the <u>destination section</u> of the *dialog*.

#### Connection mode drop-down box provides two choices:

Immediately The VSP attempts to establish an outgoing connection right after it is opened by the application. The VSP also tries to make this connection "persistent". If the connection is aborted by the DS, the VSP will (attempt to) reestablish it immediately. Connection timeout (defined by the connection timeout parameter) still works in this mode: when the current connection times out the VSP aborts it and immediately establishes a new connection. Such behavior "auto-repairs" hanged connections. On data The VSP attempts to establish an outgoing connection when the first "serial" data (since the VSP was opened or previous connection was

Connection mode option is irrelevant when the <u>routing mode</u> is "server", since in this mode outgoing connections are not allowed in principle.

the VSP.

closed/aborted) is sent by the PC application into

Connection mode option works like the **Connection Mode (CM) setting** of the DS (modes 0 and 1 only).

# Listening port

**Listening port** parameter defines the listening port number that will be associated with this *VSP*.

Listening port usage is slightly different for TCP/IP and UDP/IP transport protocols:

- For TCP/IP transport protocol this parameter defines a listening port on which incoming connections are to be accepted. Listening port is closed and irrelevant when the <u>routing mode</u> is "client", since in this mode incoming connections are not allowed in principle. Outgoing connections, when allowed (i.e. in the "client" and "server/client" <u>routing modes</u>), are established from an "automatic" port, so the listening port number has nothing to do with this.
- For UDP/IP transport protocol the situation is as follows:
  - When the <u>routing mode</u> is "client" (incoming "connections" are not allowed) the listening port parameter is irrelevant and the *VSP* sends it own UDP datagrams from an "automatic" port.
  - When the <u>routing mode</u> is "server" or "client/server" the listening port parameter defines the listening port on which incoming UDP datagrams are accepted and is also used as the port from which outgoing UDP datagrams are sent.

Listening port parameter is similar to the **Port Number (PN) setting** of the DS.

# **Destination modes**

The *VSP* has two "destination" modes that define which destination the *VSP* will attempt to connect to*:

- In the single-destination mode there is only one destination specified either by its IP-address or MAC-address.
- **In the multi-destination mode** the *VSP* maintains a table of destinations. The *VSP* switches between these destinations basing on the data sent by the application. Multi-destination mode is a "logical" equivalent of a "multi-node" RS485 network.

* When outgoing connections are allowed in principle, i.e. in the client or client/server <u>routing mode</u>.

# Single-destination mode

**Single-destination mode** is selected by choosing "single destination" from the *destination mode drop-down box* (see the screenshot below). Single destination mode allows you to specify one particular DS to which the *VSP* will be establishing its outgoing connections (when allowed by the <u>routing mode</u> and according to the <u>connection mode</u> option).

mode:	Single destination		
IP.adduara	Enable MAC> IP mapping     192 . 168 . 100 . 94	Port: 1001	
II "dudiess.	Select Device Se		
	Select Device Se	rver from the list	

# The destination DS can be specified either by its IP-address, or its MACaddress:

- When *Enable MAC-->IP mapping optionbox* is not checked the DS is specified by its IP-address.
- When Enable MAC-->IP mapping optionbox is checked the DS is specified by its MAC-address. This option exists to make the VSP-to-DS communications independent of the IP-address of the DS. If the DS is running with DHCP enabled (<u>DHCP (DH) setting</u> is 1 (enabled)) the IP-address may eventually change but the MAC-address will remain the same.

With mapping enabled, the *VSP* "discovers" current IP-address of the DS each time it needs to communicate with this DS. The process is illustrated by the following log in the <u>Port Monitor</u>:

12/17/03 17:11:00 - COM3 (INFO): Port opened 12/17/03 17:11:06 - COM3 (INFO): MAC --> IP mapping for MAC 0.2.3.4.61.189...ok, mapped to 192.168.100.9 12/17/03 17:11:06 - COM3 (INFO): Established TCP connection with node 192.168.100.92:1001 12/17/03 17:11:29 - COM3 (INFO): TCP connection closed 12/17/03 17:11:29 - COM3 (INFO): Port closed --- IP-address of the DS has changed ---12/17/03 17:17:03 - COM3 (INFO): Port opened 12/17/03 17:17:05 - COM3 (INFO): MAC --> IP mapping for MAC 0.2.3.4.61.189...ok, mapped to 192.168.100.9 12/17/03 17:17:05 - COM3 (INFO): Established TCP connection with node 192.168.100.91:1001

In the above example the IP-address of the DS has changed between the "communications sessions" but the *VSP* was able to connect to the same DS by using the MAC-->IP mapping.

Because the VSP is using broadcast UDP communications to "find" the DS with matching MAC-address, the MAC-->IP mapping feature only works for local Device Servers, i.e. devices located on the same network segment* with the PC (running VSP).

Also specified in the destination section of the *VSP properties dialog* is the *port number* on the DS. This must be the same number as the one specified in the **Port Number (DP) setting** of the destination DS.

Instead of entering the destination data manually, you can press the *Select Device Server from the list... button* and choose the DS from the list. The *button* brings up the *dialog*, similar to the *main window* of the <u>DS Manager</u>. In fact, it is the *DS Manager*, with the following two differences:

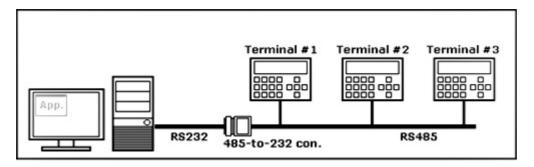
- There is an additional *Select button*. To select a particular DS as a destination for the *VSP* single-click on the DS in the *device list* and press *Select*. Alternatively, you can double-click on the DS in the *device list*.
- There is no <u>COM access mode</u> available in the <u>access mode drop-down box</u>. This is because you are choosing a network destination for the *VSP* so the target DS has to be selected from the list of devices accessible through the network!

When you select the DS from the list the *VSP Manager* selects or deselects the MAC-->IP mapping automatically:

- Mapping is deselected if the DS is not local (no matter the DS is running with DHCP enabled or disabled).
- Mapping is deselected if the DS is local but is running with DHCP disabled.
- Mapping is selected if the DS is local and is running with DHCP enabled.

Additionally, when you select the DS from the list the destination port is set automatically to the one, defined by the **Port Number (DP) setting** of the selected DS.

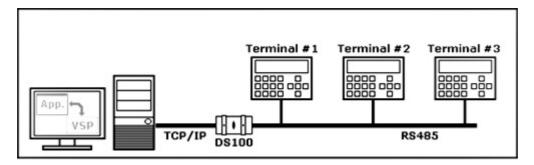
* The definition of the network segment implies that there are only network hubs (and no routers, bridges, firewalls, etc.) between the PC and all other devices on the segment. Broadcast messages cannot pass through the routers and cannot reach the Device Servers located behind those routers.


# Multi-destination mode

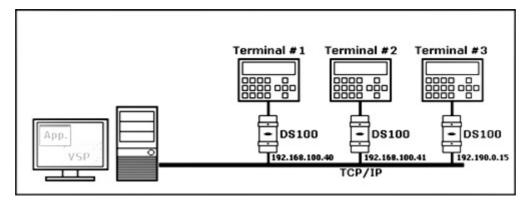
Multi-destination mode allows you to communicate with *several* Device Servers (and the serial devices behind them) through a *single VSP*. To understand the usefulness of this feature consider the following example:

# Example

Let's assume there is a multi-drop (RS485) network with several serial data terminals connected to it (see diagram below). The RS485 "bus" is attached to the PC's COM port via a 485-to-232 converter. An application software on the PC (App.) can address each terminal individually by sending a formatted command that


contains a "node address" of the terminal. All terminals on the RS485 bus receive the command but only the one with a matching node address will respond to the command. This is a very common way of multi-drop communications. The PC acts as a "master" and the terminals act as "slaves".




The formatted command typically has a start character (STX, ASCII code 2 in this example), followed by the node address (transmitted, for example, as two ASCII characters representing the number, i.e. "01", "02", etc.). The address characters are followed by the command contents and some sort of end character (for example, CR, ASCII code 13):

STX	Addr1	Addr2	Command contents	CR
-----	-------	-------	------------------	----

Now let's suppose that you need to network-enable this system. The simplest way to do so would be to connect the RS485 bus to the DS, create a *VSP* on the PC and let the application software access the terminals through the *VSP* and the DS.



This will work, but only if the distance between the terminals is small. If the terminals are to be located far away from each other the RS485 network connecting them would have become very long thus defying the purpose of network-enabling this system! Much better solution would be to connect each terminal individually to its own DS (see figure below). This way there would be no RS485 network whatsoever.



The problem here is that each DS (and hence, each terminal) will now have its own IP-address and this means that a single *VSP* will have to switch between these IPs as needed (remember that on the original RS485 system the application software communicated with all terminals on the RS485 bus through a single COM port!).

#### The solution

The multi-destination mode of the *VSP* allows you to define several destination Device Servers and switch between these destinations basing on the outgoing data stream sent by the PC application. As explained above, the multi-drop RS485 system (almost) always has some form of node addressing and the *VSP* can be programmed to filter out this addressing information and automatically switch between the destinations.

# The data in the outgoing data stream the *VSP* reacts to is divided into two portions:

- **Prefix string** this is a fixed string that signals to the *VSP* that the actual node address will follow. Prefix can be any string of (almost) any length but it cannot be NULL (empty). Only one prefix string can be defined for each *VSP*.
- **Switch string** this is the data that immediately follows the prefix. The switch string is different for each destination listed in the *destination table*. Switch strings can also be of (almost) any length but cannot be NULL (empty).

For the example used in this topic the prefix string is a single character with ASCII code 2 (STX) and the destination table looks like this:

Switch string	<b>Destination IP-address</b>
"01"	192.168.100.40
"02"	192.168.100.41
"03"	192.190.0.15

Once the *VSP* detects the prefix string in the data stream sent by the application software it starts checking if the subsequent data will match one of the defined switch strings. When the match is detected the *VSP* closes current data connection (if any) and switches to the new destination, corresponding to the detected switch string.

Here is how this is reflected in the log of the Port Monitor:

12/18/03 10:39:49 - COM3 (INFO): Port opened 12/18/03 10:40:04 - COM3 (INFO): Switching to 192.168.100.40:1001 ("01")... 12/18/03 10:40:04 - COM3 (INFO): Established TCP connection with node 192.168.100.40:1001 12/18/03 10:40:15 - COM3 (INFO): TCP connection closed 12/18/03 10:40:15 - COM3 (INFO): Switching to 192.168.100.41:1001 ("02")... 12/18/03 10:40:15 - COM3 (INFO): Established TCP connection with node 192.168.100.41:1001

#### Setting up the multi-destination VSP

To switch into the multi-destination mode and create the list of destinations select "multi-destination" from the *destination mode drop-down box* and click *Edit destination table... button- Edit destination table dialog* will open (shown on the screenshot below). The multi-destination mode is only available when the <u>routing mode</u> is "client" and when the <u>connection mode</u> is "on data". "Server/client" routing mode is not allowed because the *VSP* is supposed to act as a master and establish all connections by itself. "Connect immediately" mode is not allowed because the *VSP* needs to receive a switch string from the application in order to know which destination to connect to.

C	dit destination t	able	
	Prefix (ASCII)	8	
Load	Prefix (HEX)	82	
	Switch Subst	Destination	Add
	01 02	IP 192.168.100.40:1001 IP 192.168.100.41:1001	Edit
	03	IP 192.100.0.15:1001	Delete

The prefix string is entered into the *Prefix* (*ASCII*) or *Prefix* (*Hex*) *textboxes*. These textboxes are synchronized with each other. *Prefix* (*ASCII*) *texbox* records the characters as you type them. For example, if you press <A> key this will be interpreted as ASCII character 'A'. The *Prefix* (*Hex*) *texbox* will reflect the ASCII HEX code of this character- 41. Typing "02" (ASCII code of the STX character) into the *Prefix* (*Hex*) *textbox* will cause the image of this character (smiley face) to appear in the *Prefix* (*ASCII*) textbox. Special characters, such as STX, can also be entered in the Prefix (*ASCII*) *textbox* using the <CTRL> key (<CTRL>+<B> for STX).

Available destinations are entered into the *destination table*- there are *Add*, *Edit*, and *Delete buttons*. Pressing *Add* or *Edit button* opens the *Edit destination entry dialog* (see the screenshot below).

dit destination	entry
Switch (ASCII)	01
Switch (HEX)	30 31
Subst (ASCII)	
Subst (HEX)	
	Enable MAC> IP mapping
IP-address:	192 . 168 . 100 . 40 Port 1001
	Select Device Server from the list
	0K. Cancel
-	

*Switch (ASCII)* and *Switch (Hex) textboxes* are used to enter the switch string for a particular destination.

*Substs (ASCII)* and *Subst (Hex) textboxes* provide additional functionality that haven't been mentioned yet. If the data is entered into those fields then the *VSP* will automatically substitute the switch string encountered in the data stream sent

by the application with this substitution string.

For example, if the switch string is "01" and the substitution string is "00" then the following will happen (STX character is represented as  $\odot$ ):

Application-->VSP: ©01ABC VSP-->DS: ©00ABC

The destination portion of the *Edit destination entry dialog* is similar to that displayed in the *VSP properties dialog* in the single-destination mode. The destination DS can be defined by its IP-address or by its MAC-address, depending on whether the *MAC-->IP mapping option* is enabled or not. Destination port must match the one specified by the **Port Number (DP) setting** of the destination DS. Instead of typing in the data manually, you can press the *Select Device Server from the list... button* and choose the DS from the list.

How multi-destination errors are handled

- If, after the VSP is opened, the application starts sending "random" data without sending a prefix and a switch string first, or if the data after the prefix does not match any switch string, the VSP will be discarding this data until a valid prefix and switch are detected.
- If, after a valid prefix and switch have already been detected and the VSP has established a connection with a certain destination DS, the VSP receives the prefix string that is not followed by any valid switch string, then the VSP will keep sending the data across the existing data connection.

# **Outbound packets tab**

The challenge of sending the data from the application to the DS (and the serial device behind it) is in deciding how to group this data into the network packets of reasonable size. Carrying too little data in each packet increases network load while sending packets with too much data slows down the delivery of this data to the DS.

*Outbound packets tab* of the *VSP properties dialog* (shown on the screenshot below) offers several options that define how the *VSP* combines serial data into network packets. Functionality provided by this *tab* is very similar to the one provided by the <u>encapsulation settings</u> of the DS (also see <u>serial-to-</u><u>Ethernet data routing</u>).

	Max. packet length:	000 20	
		255	byte(s)
C Send data	a immediatly		
Use adva	nced packet generation of	ptions	
<b>–</b> 1	Max. intercharacter delay	0 =	millisecond(s)
ji ସ	Use start/stop characters	Details	
majority of seria	ns for outbound packet ge al devices and applications. to inability to communicate Click the button below to Restore defau	Changing these with your serial d restore defaults.	selections may

The simplest way to subdivide the data into packets is by sending the data out in exactly the same "chunks" as this data was sent in by the software application. Under *Windows OS* the application can "write" a number of data bytes into the *VSP* "in one go" (i.e. it is possible to "write" an "ABC" string at once, without the need to first send "A", then "B", then "C"). When the *Send data immediately option* is selected the *VSP* does just that. As soon as the application "writes" the data, the *VSP* takes this data and combines it into a single network packet, unless the data size exceeds the limit specified by the *Maximum packet length option*.

The *Maximum packet length option* breaks the large chunks of data into smaller portions. This option can never be disabled, so there is always a maximum limit for the packet size. When the TCP/IP <u>transport protocol</u> is selected the maximum packet length is fixed at 255 bytes and cannot be changed. For UDP/IP transport protocol you can set your own maximum length in the 1-255 range.

Using *Send data immediately option* (almost) always works but may not be the ideal choice. Some (badly written) applications send the data in very small portions (sometimes even byte-by-byte). You won't notice this with a regular COM but on the *VSP* this will result in a flood of packets carrying a single data byte each. This will noticeably slow down the performance of your system and also put an unnecessary strain on the available network bandwidth.

# Advanced packet generation options

Selecting *Use advanced packet generation option* prevents this from happening as you can precisely define how the *VSP* will combine the data into network packets. With this option selected, the *VSP* doesn't send the data to the DS immediately after it is received from the application but instead waits for certain conditions to be met:

- When *maximum intercharacter delay option* is enabled the *VSP* sends out all the data in its Tx buffer when no new data is received from the application for a predefined period of time (in milliseconds). Using this option you can combine the data that is sent by the application in "rapid succession" into a larger packets (but still not exceeding the *maximum packet length*).
- When Use start/stop characters option is enabled the VSP accepts the data from

the application selectively and generates outgoing data packets when a certain character is discovered in the data stream.

#### Using start and stop characters

Start and stop characters offer an effective method of setting the packet generation rules in systems that use some sort of data packets (we will call them *data blocks* to avoid possible confusion with *network packets*). Data blocks usually have encapsulation, which means that they start and end with specific ASCII characters. Since the data block is a basic unit of data transmission in such systems it is only logical to divide the data sent by the *VSP* into network packets basing on these data blocks.

To specify the data block boundaries enable *Use start/stop characters option*, then click *Details...*- the *Start/stop characters dialog* will open (see the screenshot below).

<ul> <li>Start</li> </ul>	on start ch	aracters only	
Char	Hex 0x02		Add
'	0x02		Edit
			Delete
on cha	acters		
op char Char	Hex	# of P.C.	Add
		# of P.C.	Edit

- **Data block starts.** Your data blocks can either start on any character or on specific start characters only (up to three start characters can be defined). In the first case the data block starts on the first character received (past the end of the previous data block). In the second case the data block is opened only when the start character is encountered and the *VSP* ignores (discards) all data between the data blocks. Start characters received past the beginning of the data block are treated as normal data characters and do not reopen the data block in any way.
- **Data block ends.** The data block ends on one of (up to three) stop characters. If you don't set any stop characters then the data block, once started, will never end, so all data sent by the application may be viewed as one continuous data block. If you select the stop characters the *VSP* will start discarding all data received after the stop character (or N characters after the stop character- see below) until the new data block is opened. Once the stop character is detected the *VSP* sends the data in its Tx buffer to the DS. If no stop characters are defined the *VSP* can only send the data when the maximum packet size is reached or when the intercharacter delay is exceeded (when this option is enabled).
- **Post-characters**. In some systems there can be a fixed number of data characters behind the stop-character (check characters are sometimes added

this way). For each stop character you can specify a number of post-characters that will be counted as belonging to the same data block. The data block is closed and the data is sent to the DS only after those post-characters are received.

All of the above options can be combined. For example, you can have the *VSP* generate the data packet when the maximum packet size is reached (one again, this option cannot be disabled), or intercharacter delay is exceeded, or the stop character is encountered.

Clicking *Restore defaults... button* returns you to the simplest way of outbound packet generation-*send immediately option* is selected and the *maximum packet size* is set to 255.

# **Unsupported features and limitations**

This topic describes existing limitations of the VSP.

- **Password protection for on-the-fly commands.** On the DS side this feature is enabled through the <u>On-the-fly Password (OP) setting</u>. The *VSP* does not support this yet so the password protection for on-the-fly commands must be disabled on the DS.
- **Password protection for data connections.** On the DS side this feature is enabled through the **Data Login (DL) setting**. The *VSP* doesn't support data logins yet and so the password protection for data connections must be disabled on the DS.
- The VSP doesn't work through proxies. See below for the explanation.

# Why VSP doesn't work through proxies

Some proxy clients, such as the client for the *Microsoft ISA server*, install themselves on the system by substituting standard sockets interface* through which user-mode *Windows* applications interact with TCP/IP networks. Being a kernel-mode application, the *VSPD* is working with the network using a low-level network interface, not the "sockets" interface whose place in the *Windows* hierarchy is higher than that of the *VSPD*. Because of that the *VSPD* is not aware of the proxy client and behaves as if the proxy client is not installed at all!

* Terrible idea!

# Warnings and messages

This reference section contains additional information on the warning and error messages displayed by the *VSP Manager*.

# Listening port is in use

# **Description**

# Message text:

Listening port associated with this *VSP* is already in use, possibly by another *VSP*. Set another listening port number and try again

#### <u>Details</u>

<u>Listening port</u> is the port number the *VSP* is accepting incoming connections on*. This message appears when the *VSP* attempts to open this port (which usually happens when the *VSP* is opened) and the port is already in use by another application (possibly, another *VSP*).

To solve this problem select another number for the listening port and try again.

* When incoming connections are allowed by the <u>routing mode</u>.

# No start characters defines

#### **Description**

**Message text:** You haven't defined any start-characters. Close still?

#### **Details**

This message appears when you are closing the *start/stop characters dialog* and you haven't defined any start characters while the *start on any character option* is disabled. This means that there are no conditions whatsoever that will open the data block and no data will ever be accepted from the application.

For more information on the data blocks see outbound packets tab.

#### Port substitution required

## **Description**

**Message text:** You have chosen the name that is currently assigned to a standard COM port. The COM driver for this port will be substituted with the *VSPD*. Are you sure you want to continue?

#### **Details**

This message appears when you select the port name for the *VSP* that is currently in use by the real COM port. Typically, these are "COM1" and "COM2" port names.

For more information on the subject see <u>VSP name selection</u>.

# VSP is in use

10 A 4

Description	
Message text:	This VSP is currently opened by another application. Port properties cannot be altered at this time
	This VSP is currently opened by another application and cannot be deleted

#### **Details**

You can only edit VSP properties or delete a VSP when it is not currently opened

(i.e. not in use by another application).

# **Port Monitor**



Port Monitor is a parts of the Device Server Toolkit.

The *Port Monitor* is used to log the activity of <u>Virtual Serial Ports (VSPs)</u> installed on your *Windows* system.

When the *Port Monitor* is running its icon appears in the system tray, as shown on the screenshot below.

۲

Double-clicking on the *Port Monitor's* icon in the system tray brings up the *main window*:

Virtual Serial Port Monitor	V3.12	- O ×
Eile ⊻iew		
Q X 3 h		
12/02/04 21:03:44 - COM3 (INFO): 12/02/04 21:03:45 - COM3 (INFO):	"On-the-Fly" command for 192.168.100.91: get DSR pin statussuccess "On-the-Fly" command for 192.168.100.91: get CTS pin statussuccess "On-the-Fly" command for 192.168.100.91: set DTR to highsuccess "On-the-Fly" command for 192.168.100.91: set Baud rate to 38400 bpssuc "On-the-Fly" command for 192.168.100.91: set party to nonesuccess "On-the-Fly" command for 192.168.100.91: set data bits to 8 bitssuccess "On-the-Fly" command for 192.168.100.91: set data bits to 8 bitssuccess "On-the-Fly" command for 192.168.100.91: set flowcontrol to nonesuccess "On-the-Fly" command for 192.168.100.91: set flowcontrol to nonesuccess "On-the-Fly" command for 192.168.100.91: set flowcontrol to nonesuccess "On-the-Fly" command for 192.168.100.91: set DTR to lowsuccess	:
		NUM

The *main window* displays the log of registered events. The simplest way to observe the work of the *Port Monitor* is to open the *VSP* from some application program and check what kind of data appears in the *Monitor* (sample output is shown on the screenshot above).

You can erase all data in the *Port Monitor's window* by choosing *File--> Clear log* from the *main menu* or clicking *clear monitor log* button (shown below).

Q

You can also copy the log data into the clipboard by first selecting the desired part of the data in the *Port Monitor's window* and then choosing *File--> Copy* from the *main menu* or clicking *copy button* (shown below).

8

All events logged by the *Monitor* can be divided into informational, warning, and error events. *Preferences dialog* (general and event tabs) defines which events are logged, what format is used to displays those events, and what action the *Monitor* will take when an error event is encountered.

The *Monitor* also features a <u>dump function</u> which can be used to track the data passing through a particular *VSP*.

64.

# Preferences dialog (general tab)

*General tab* of the *preferences dialog* (shown on the screenshot below) offers a number of options that define how the *Port Monitor* logs events. To display the tab choose *File-->Preferences* from the *main menu* of the *Port Monitor* or click *Preferences button* (shown below).

Message prefix format:         \$\frac{1}{2} + \frac{2}p [\%m]:         \$\frac{1}{2} - \frac{2}p [\%m]:         \$\frac{1}{2} p Port Name placeholder         \$\frac{1}{2} m Statemap placeholder         \$\frac{1}{2} write events to file         Path to log file:         \$\frac{1}{2} VProgram Files\Tibbo\Tibbo Device Server T         \$\frac{1}{2} Notify on errors         \$\frac{1}{2} Play sound file:         \$\frac{1}{2} Play sound file:	enera	Events
Sp       Port Name placeholder         Imestamp placeholder         Message type placeholder         Write events to file         Path to log file:         CNProgram Files\Tibbo\Tibbo Device Server T         Notify on errors         Popup main window         Play sound file:	lessi	age prefix format
Image: State of the the state of the stat	%t - %	ip (%m):
Path to log file:  C:\Program Files\Tibbo\Tibbo Device Server T  Notify on errors  Popup main window  Blink system tray icon  Play sound file:	\$t	Timestamp placeholder
Notify on errors     Popup main window     Play sound file:		
Notily on errors     Popup main window     Blink system tray icon     Play sound file:	W	rite events to file
C Popup main window C Blink system tray icon		
ding.wav 😂 🍕	F	Path to log file:
	F N (	Path to log file: C:\Program Files\Tibbo\Tibbo Device Server T otify on errors Popup main window Popup main window Popup main window

- **Event prefix format** defines how each event in the log will look like. There are three fields that can be added to each event line:
  - Port name placeholder (%p). Adding %p to the format string will make the Monitor print the VSP name (i.e. "COM3", "COM4") for which the event was generated.
  - **Timestamp placeholder (%t).** Adding **%t** to the format string will make the *Monitor* print current date and time stamp for each event line (i.e. "12/30/03 14:57:13").
  - Message type placeholder (%m). Adding %m to the format string will make the *Monitor* print the type of event (i.e. "INFO", "WARNING", "ERROR") for each event line.

You can combine the placeholders, for example: "%t- %p (%m):". This will make the *Wizard* print all events like this:

12/30/03 15:06:51 - COM4 (INFO): Port opened 12/30/03 15:06:52 - COM3 (INFO): Port closed

- Write events to file option, when enabled, allows you to choose a file to which the *Monitor* will save all logged events. The *Monitor* will create a plain text file that can be viewed using any text editor.
- Notify on error option, when enabled, allows you to choose what the *Monitor* should do if any error events are logged. You have two choices:
  - **Popup main window.** The *main window* of the *Port Monitor* will be displayed automatically whenever an error event is registered.
  - Blink system tray icon. The main window will not be opened but the Monitor's

icon in the system tray will have a blinking exclamation point.

• Additionally, you can enable **play sound file option** and choice the sound that will be generated each time an error event is logged.

# Preferences dialog (event tab)

*Events tab* of the *preferences dialog* (shown on the screenshot below) allows you to enable/disable logging of and set the font for individual events and event groups. To display the tab choose *File-->Preferences* from the *main menu* of the *Port Monitor* (or click *Preferences button*), then click *events tab*.

🥙 Preferences button

🖻 🗹 Warnings 📃 🔳	Inherit font
	Change font
On-the-Fly still trying  Port opened in demo m  Informational	Example AaBbCcXxYxZz
Connection accepted Connection closed Connection closed MAC>IP mapping On-the-Fly On-the-Fly On-the-Fly disabled Pin state change notific Port opened Switching to Switching to User prompt	

When the *Monitor* is installed all events are enabled and three different font types are selected for the informational, warning, and error events:

```
12/30/03 15:44:45 - COM3 (INFO): Port opened <---- info event
12/30/03 15:44:48 - COM3 (WARNING): "On-the-Fly" command for 192.168.100.95: get DSR pin status...timed ou
still trying... <---- warning event
12/30/03 15:44:54 - COM3 (ERROR): "On-the-Fly" command for 192.168.100.95: get DSR pin
status...timed out <---- error event
```

To enable/disable entire event group click on the option box next to the group name. To change the font for the entire group select the group name in the list and press *Change font button*.

To enable/disable individual event "expand" the event group (by clicking on the "+" sign or double-clicking on the group name), then click on the option box next to the event name. To change the font for an individual event select this event in the list, deselect the *inherit font option*, then press *Change font button*.

# Data dump feature

The *Port Monitor* can be used to capture the "serial data" passing through the *VSP*. The data is displayed in the *Hex dump window*, both in the HEX and ASCII format, as shown on the screenshot below:

Eile																	
	Q.																
ТΧ	02	44	Øđ		_				_	_		_			_		.D.
RX	02	41	54	52	35	31	30	41	20	28	56	33	2e	31	35	29	.ATR510A (U3.15)
	Øđ																
TΧ	82	44	80														.D.
TX RX	02	41	54	52	35	31	30	41	20	28	56	33	2e	31	35	29	.ATR510A (U3.15)
	Øđ																
TX	02	4e	Øđ														.N.
RX	02	41	35	31	33	34	Øđ										.A5134.
ТΧ	02	54	Øđ														.1.
RX	82	41	31	30	31	33	35	37	Øđ								.A101357.
ТХ	02	44	Øđ														.D.
RX	02	41	30	31	30	33	32	30	30	34	Øđ						.401032004.

Before you can open the Hex dump for a particular VSP you need to enable RX/TX data logging option for this VSP (this option can be found in the

<u>VSP properties dialog</u> of the *VSP Manager*). After that choose *View--> Hex dump* from the *main menu* of the *Port Monitor-* the *choose VSP to monitor dialog* will open. Select *desired VSP* and click OK.

2.0		
Port name:	СОМЗ	*
	1000 AN 1000	
	OK	Cancel

The only two functions available in the *Hex dump window* are *save* (to save all captured data into a data file) and *clear* (to erase all data).

# **Connection Wizard**



**Connection Wizard** is a part of the <u>Device Server Toolkit</u>.

*Connection Wizard* assists you in setting up typical data links involving Tibbo Device Servers and *Virtual Serial Ports (VSPs)*.

Shown below is the *welcome screen* of the *Connection Wizard*.



*Connection Wizard* offers a selection of jobs that help you setup several kinds of typical data links involving Tibbo Device Servers and *Virtual Serial Ports* (*VSPs*). For example, a <u>VSP-to-DS</u> job helps you create a *VSP* on the PC, and then configure this *VSP* and the Device Server (DS) of your choice to work with each other.

Creating a VSP-to-DS link through the *Wizard* produces the same effect as when you manually set up the *VSP* using the <u>VSP Manager</u> and then configure the DS with the <u>DS Manager</u>. The difference is that after you have answered several simple questions the *Wizard* does all necessary adjustments automatically. As a result you save tremendously in terms of time and debugging effort spent on setting up this data link. After you have familiarized yourself with the *Wizard* you can expect to complete typical data links in under 1 minute! Even when the link you need to create is not exactly the one this *Wizard* can help you with, you still can run the closest *Wizard* job, then make remaining setup changes manually.

This *Manual* follows the actual "flow" of *Wizard steps*. Pressing *Next* in the *welcome screen* of the *Wizard* moves you to the next step, on which you choose the <u>kind of data link</u> you want to create. Likewise, the next topic of this *Manual* (<u>choosing the Wizard job</u>) details this next step.

# Choosing the Wizard job

On this step you choose the kind of job you want the *Connection Wizard* to perform.

Tibbo Connection Wizard -	V3.12 X
	Select the kind of link you wish to create
	<ul> <li>Create a link between a Virtual Serial Port and a Device Server</li> <li>Configure a Device Server for direct communications with an application on this PC</li> <li>Create a link between two Device Servers</li> <li>Finish remote job</li> </ul>
	< Back Next > Help Cancel

Four choices are currently available:

- Create a link between a Virtual Serial Port and a Device Server
- <u>Configure a Device Server for direct communications with an application on</u>
   <u>this PC</u>
- <u>Create a link between two Device Servers</u>
- Finish remote job

# VSP-to-DS link

This job is selected by choosing *create a link between a Virtual Serial Port and a Device Server* from the <u>list of available jobs</u>.

When performing this job the *Connection Wizard* creates a *VSP* (on the PC the *Wizard* is running on) and then configures this *VSP* and the DS of your choice to work with each other. Use this job if you want to make your "serial" PC software* communicate with the serial device through the *VSP* and the DS. This way your PC software and the serial device can communicate with each other as if they were still interconnected by a normal serial cable. This is a fast and economical way of network-enabling a legacy serial system that you are unwilling or not able to modify- both the PC software and the serial device will require no modification whatsoever to work through the network.

* I.e. the software that can only communicate through COM ports. If your software supports communications through TCP/IP networks use <u>direct-to-DS</u> connection.

# **VSP** name selection

On this step you select the name of the *VSP* that will be configured on the PC side of the VSP-to-DS connection. *VSP* names look like the numbers of regular COMs, i.e. COM1, COM2, COM3.

Tibbo Connection Wizard - V	3.12 Specify the Virtual Serial Port	×
	C Select existing VSP C Create new VSP Pott name: COM4 COM4 COM2 COM2 COM5 COM5 COM6 COM7 COM8 COM9 COM9 COM10 COM10	Specify the Virtual Serial Port ect existing VSP ate new VSP I Serial Port (COM3)
_	<back next=""> Help Cance</back>	<pre>d d d d d d d d d d d d d d d d d d d</pre>

- Choosing *select existing VSP option* displays the list of *VSPs* that are already found on your system (i.e. the ones that have been created before).
- Choosing *create new VSP option* displays the list of unused *VSP* names (shown above). The number of ports you can have in *Windows* is virtually unlimited- the *Connection Wizard* lets you create any port in the range between COM1 and COM255*.

There are no rules on what *VSP* name to choose but <u>some considerations are provided here</u>.

* We could extend the number even further but feel that the current range is sufficient for all practical purposes.

# Choosing the VSP name

This topic provides additional information on choosing a proper *VSP* name.

There are no rules on what *VSP* name to choose, just make sure that you pick the name that can be selected in the application software you plan to use with this *VSP*. Most programs provide a limited selection of ports (typically, up to COM2 or COM4). Therefore, choosing "COM100" won't be suitable as you will not be able to select this *VSP* in such a program.

COM4	•	1	
🖉 СОМ1 —	-	Н	Real COM ports
🖉 COM2 <u>—</u>	. 🗖	۳,	
COM4			COM3 is not
COM5			available
COM6			
COM7			
COM8			
COM9	-		

On the screenshot above COM3 is not listed- this is because the *VSP* with this name already exists. Notice, however, that ports COM1 and COM2 are not excluded from the list and are marked with icons identifying them as "real" COMs*. This is because even though these port numbers are "occupied" the *Connection Wizard* can still "grab" them. For example, if you select COM1 the *Wizard* will automatically reassign COM1 to be a *VSP* (from this moment on COM1 will seize working as a normal COM port and will start working as a *VSP*). Substitution may be necessary when you are dealing with an old application software that only provides a choice of COM1 and COM2 which are usually occupied by real COMs.

When you delete the *VSP* (this can be done through the <u>VSP Manager</u>) that substituted a standard COM port the *VSP Manager* will attempt to restore the original driver (make this port become a normal COM again). This mostly works but on some systems you may encounter problems (especially under *Windows ME*). We have conducted an extensive "research" into the port substitution, only to conclude that it just won't work reliably on all systems!

We recommend that you do not use port substitution unless absolutely necessary!

* This is system-dependent. Some modern PCs don't have any real COMs.

# Target DS

On this step you select the DS that the VSP (selected on the <u>previous step</u>) will be communicating with.

Tibbo Connection Wizard	- V3.12	×
	Specify the Device Server	
	C Device Server is not accessible from this PC	
	Device Server is accessible from this PC	
	Enable MAC> IP mapping	
	IP-address:	
	192 . 168 . 100 . 90	
	Access method:	
	Out-of-Band (UDP)	
	Access port:	
	65535	
	Select from the list	
	<back next=""> Help Can</back>	cel

#### In most cases you complete this step as follows:

- Select Device Server is accessible from this PC.
- Click Select DS button and choose the DS from the list. The button brings up the dialog, similar to the main window of the <u>DS Manager</u>. In fact, it is the *DS Manager*, with the following two differences:

- There is an additional *Select button*. To select a particular DS single-click on the DS in the *device list* (in the <u>auto-discovery</u> or <u>address book</u> access mode) and press *Select*. Alternatively, you can double-click on the DS in the *device list*.
- The <u>COM access mode</u> is not available when the *DS Manager* is called from within *Wizard*. This is because you are choosing a network destination for the *VSP* so the DS has to be selected from the list of devices, accessible through the network!
- Click Next.

This step provides a choice of several access options for the target DS- read additional info on accessing the DS for more information.

When you click *Next* the *Wizard* attempts to contact the target DS and verifies if this DS is local or remote. The DS of your choice must be available on the network, or the *Wizard* won't allow you to continue. Moreover, the IP-address of this DS must be reachable*. If everything is OK the *Wizard* reads out all current setting values of this DS.

# What if the DS is not visible from the PC

If the PC and the DS are located on different network segments it may well be that the DS is not "visible" from this PC but the PC is visible from the DS. This is normal as many networks are not symmetrical. For example, if the PC has a public (real) IP-address and the DS is located on a firewalled network segment then the DS can connect to the PC (*VSP*), but the PC (*VSP*) cannot connect to the DS.

To specify that the DS is not visible from this PC select the *Device Server is not accessible from this PC* option and click *Next*.

# There are two implications of this choice:

- In this VSP-to-DS connection it is the DS that will always be connecting to the *VSP*, since *VSP* cannot connect to the DS.
- The *Wizard* won't be able to setup the DS through the network (this is because it cannot "see" the DS). You will have a chance to setup this inaccessible DS through its serial port or through a temporary network connection. You will be given a choice to do this <u>within current Wizard job</u> or generate a *configuration script* and finish the setup later, using the <u>finish remote job</u> feature of the *Connection Wizard*.

* The DS Manager and the Connection Wizard have the ability to "see" local Device Servers even if the IP-address of these devices is unreachable (this is done by using broadcast communications- read about this <u>here</u>). The reason why the Wizard demands that the Device Server has a proper IP-address is because the VSP will have to establish a real data connection with this DS and that <u>requires</u> a reachable IP-address.

# Additional info on accessing the DS

This topic provides additional information on the access options available for the target DS.

The target DS can be selected from the list (using *Select DS button*) or its address and access parameters can be input manually. The first option is usually more convenient and requires less manual input and decisions on your behalf.

# Specifying the target address

The target DS can be specified either by its IP-address or MAC-address:

- When *Enable MAC-->IP mapping option* is not checked the DS is specified by its IP-address.
- When Enable MAC-->IP mapping option is checked the DS is specified by its MAC-address. If the DS is running with DHCP enabled its IP-address may eventually change but the MAC-address will remain the same. This option exists to make the communications with this DS "IP-address independent": each time the VSP needs to connect to the DS it will find out the current IP-address of the DS with the target MAC-address, and only then access this IP-address. The MAC-->IP mapping feature only works for local Device Servers. If the target DS is remote it can only be specified by its IP-address.

When you choose the DS from the list (through the *Select DS* button) the *Wizard* selects or deselects the mapping option automatically:

- Mapping is deselected if the DS is not local (no matter the DS is running with DHCP enabled or disabled).
- Mapping is deselected if the DS is local but is running with DHCP disabled (<u>DHCP (DH) setting</u> is 0).
- Mapping is selected if the DS is local and is running with DHCP enabled (**DHCP (DH) setting** is 1).

#### Specifying the access method and port

Besides the IP (or MAC) you need to specify the *access method* and *access port* for this DS. Access method is the way the *Wizard* will access the DS in order to program it. Access port is the port to which the *Wizard* will send its programming commands. These options are not directly related to how the *VSP* will be accessing the DS, they just specify how the *Wizard* is going to access the DS.


#### There are two access methods:

- When <u>out-of-band (UDP) access method</u> is selected the *Wizard* communicates with the DS using command UDP datagrams sent to the command port 65535 of the DS. Out-of-band commands offer a primary way of network programming that requires no preliminary setup on the DS side. This access method is suitable for all local Device Servers. It will also work with remote Device Servers unless the UDP traffic is banned by the network routers (firewalls, etc).
- When <u>inband (TCP) access method</u> is selected the *Wizard* communicates with the DS by sending commands through the TCP connection established to the data port of the DS (this is the number defined by the <u>Port Number (PN) setting</u> of the DS). Inband (TCP) commands provide a secondary method of network programming that can be used in situations when out-of-band UDP access is impossible (for remote Device Servers). The downside is that a certain pre-programming must be done on the DS before it can be accessed using inband access method- read <u>preparing the DS for inband access</u> for step-by-step instructions.

When you select the DS from the <u>address book</u> (through the *Select DS* button) the *Wizard* copies the access method and access port from the address book entry.

# Initiator of the data exchange

On this step you select which side of the VSP-to-DS connection will be the first to send the data.



Notice, that asking "who will be the first to send the data?" is not the same as asking "which side will be establishing the data connection to the other side?"* When making your choice imagine that there is no network at all and the serial device is attached to the COM port of the PC directly. Now, which side sends the data first?

# There are three choices:

- Virtual Serial Port. Select this option if it is the application software that will be sending the first data. This is typical for the kind of serial devices that we, at Tibbo, came to call "slave terminals". Such terminals communicate with the PC software using some sort of command-reply communication protocol and it is the PC software that usually plays the role of a "master": the terminal won't send any data unless the PC sends a command first (and this is the "first data"!).
- **Device Server.** Select this option if it is the serial device that will be sending the first data. This is typical for the kind of serial devices that we call "scanners" (readers)**. This class of serial devices differs from "slave terminals" in that they send out the data spontaneously, without any prior prompt from the PC software.
- **Any side.** In some systems the data may first come from any side. For example, there are some "active terminals" out there that can send out the data spontaneously and at the same time respond to the commands from PC. Also choose this option if you are not sure which side of your system sends the data first.

* Although these two questions are connected- see <u>how the Wizard decides which side open the connection</u>.

** Meaning barcode scanners or magnetic card readers.

# Netmask & gateway for the DS

This step comes in two options: you are either requested to input the gateway and netmask information that the DS needs to connect to this PC (left screenshot) or you are shown a screen informing you that the entry of this data is not necessary (right screenshot).

Tibbo Connection Wizard -	V3.12	×
	Gateway and netmask settings for the Device Server	X
	C This PC is not accessible from the Device Server	vy and netmask settings for the Device Server
	This PC is accessible from the Device Server	
	Gateway IP-address:	o need to specify the gateway and netmask for this ever. This may be because:
	Netmask:	tice Server is not going to establish outgoing connections,
	0.0.0.0	as of this data lank are located on the same network
000		nt show this screen in the future
	<back next=""> Help Cancel</back>	
		<back next=""> Help Cancel</back>

# The gateway and netmask need only be set when two conditions are observed:

- The DS may need to (or must) establish data connections to the PC (this is determined by the *Wizard*).
- The DS and the PC are located on different network segments (there is at least one router between the PC and the DS).

Setting gateway and netmask information for the DS that only accepts incoming connections is not necessary*. If the DS is local there are no routers between this DS and the PC, so the gateway and netmask are not necessary even if the DS has to connect to the PC.

#### How to set the gateway and netmask

There is no straight way of finding out what data to enter. You need to obtain this information from somebody with a knowledge of your network's topology. Here is one hint, though.

If the IP-address of the target DS is configured through DHCP (**DHCP (DH) setting** is 1 (enabled)), then the DHCP server might have configured this Device Server's gateway and netmask as well. When you reach this step of the *Wizard* the *Gateway IP-address* and the *Netmask fields* are filled with the data from the **Gateway IPaddress (GI)** and **Netmask (NM)** settings of the target DS**. This data may already be correct!

# What if the PC is not visible from the DS

When the PC and the DS are located on different network segments it may well be that the PC is not "visible" from this DS. This is normal as many networks are not

symmetrical. For example, if the DS has a public (real) IP-address and the PC is located on a firewalled network segment then the PC (*VSP*) can connect to the DS, but the DS cannot connect to the PC (*VSP*).

To provide for this situation the option box at the top of this step's screen allows you to specify that *this PC is not accessible from the Device Server*. Choose the option if this is so and if the option is available.

The option to specify that the PC is not accessible from the DS is disabled (not allowed to be chosen) when you have previously specified (at the <u>target DS</u> step) that the DS is not accessible from the PC. The reason is obvious: at least one side of the connection must be able to "see" the other side!

After you have completed this step the *Wizard* has enough information to <u>decide</u> which side of the VSP-to-DS link will be responsible for establishing the data connections.

* We found that some people hold a passionate belief that these parameters are necessary in any case. This is not true! If your network device doesn't have to establish outgoing connections you never have to bother about the gateway and netmask!

** Unless you have specified that "the DS is inaccessible from this PC" at the <u>target DS</u> step of the Wizard, in which case the Wizard cannot obtain this information.

### How the Wizard decides who opens connections

When you click *Next* on the <u>netmask and gateway step</u> the *Wizard* has enough information to decide which side of the VSP-to-DS connection will be responsible for establishing data connections with the other side.

In doing this, the *Wizard* decides on the future values of the **<u>Routing Mode (RM)</u>** and <u>**Connection Mode (CM)**</u> settings of the DS, as well as the <u>Routing Mode</u> and <u>Connection Mode</u> properties of the *VSP*.

In general, the *Wizard* tries to follow the natural flow of data between the application and the serial device. In the <u>initiator of the data exchange</u> step you have already specified which side sends the data first, so the *Wizard* will have this side open a data connection to the other side as soon as the first data needs to be sent from this side of the connection.

For example, if you are dealing with the "slave terminal" type of serial device, then the first data is always sent by the application (and the *VSP*). Therefore, the *Wizard* will set the <u>Routing Mode property</u> of the *VSP* to "client" and the **Routing Mode (RM) setting** of the DS to "slave".

Lines 1-3 of the following table illustrate what's just been said. Notice that the **Connection Mode (CM) setting** is always set to "on data". As the first data is received (by one side of the link) it triggers an attempt to open a data connection with the other side of the link:

		Which side can "see" the other side of the connection	Which side sends the	Routing Mode on	Connection Mode on	Routing Mo on the DS
			first data	the VSP	the VSP	
	1	Both sides can see each other	Application	Client	On data	Server
-	2	Path sides can acc each other	Carial davica	Convor		Cliant
	2	Both sides can see each other	Serial device	Server		Client (server/clier
-	3	Both sides can see each other	Any side	Server/client	On data	Server/clier
	4	Only PC can see the DS	Application	Client	On data	Server
-	5	Only PC can see the DS	Serial device	Client	Immediately	Server
-	6	Only PC can see the DS	Any side	Client	Immediately	Server
			Ally Side	Cheffe	Innediatory	561461
	7	Only DS can see the PC	Application	Server		Client
				-		<u></u>
	8	Only DS can see the PC	Serial device	Server		Client
-						

The situation becomes more complicated when only one side of the connection can "see" the other side. Consider the case in line 5 of the table. The serial device has to send the data first, but it cannot "see" the *VSP*. Therefore, even when the DS receives the first data into its serial port it will be unable to establish a connection to the *VSP* and send this data!

The way out is to have the *VSP* connect to the DS as soon as the *VSP* is opened (so, <u>connection mode</u> for the *VSP* is set to "immediately"). This way, by the time the DS needs to send the first data to the *VSP* the connection is already established. This kind of connections are called "reverse".

A special comment should be made on line 2 of the table, where the Routing Mode on the DS is designated to be either "client" or "server/client". The *Wizard* chooses "client" if DS programming is effected using <u>out-of-band access method</u> (you have selected this on the <u>target DS</u> step of the *Wizard*). If <u>inband access method</u> was selected the *Wizard* will set the mode to "server/client". This is because choosing "client" would cause it DS to reject all incoming connections in the future and this means that you wouldn't be able to program the DS using inband access in the future!

* This is the case when you have specified that "the Device Server is not accessible from this PC" on the <u>target DS step</u>, or that "the PC is not accessible from this Device Server" on the <u>netmask and gateway for the DS step</u> of the Wizard.

# **Transport protocol & listening ports**

On this step you select the protocol that will be used for exchanging the data between the *VSP* and the DS. You also choose the listening port number on the side(s) of the link that will be receiving incoming connections from the other side.

🍓 Tibbo Connection Wizard -	V3.12	×
	Specify transport protocol and listening ports	
	C UDP/IP transport protocol	
	TCP/IP transport protocol	
	Listening port on the VSP:	
	Listening port on the Device Server:	
	1001	
000		
	<back next=""> Help Cancel</back>	

In general, we recommend you to stick to the TCP/IP, unless you have a good reason (which is very rare!) why you have to use UDP/IP protocol.

There is one case when the UDP/IP selection is not available and the TCP protocol is pre-selected for you- this is when you have specified an inband access method on the <u>target DS step</u> of the *Wizard*. Since inband access requires a TCP/IP data connection with the DS you must use TCP/IP transport protocol!

#### **Listening ports**

This screen also provides an option of entering the port number on the listening side(s) of the VSP-to-DS link. By now the *Wizard* has already decided <u>which side opens the connections</u>. Connecting side needs to know the number of the listening port on the other side. For example, if it is the *VSP* that will always be connecting to the DS, then you only have to specify the listening port on the DS side. Consequently, the *listening port on the DS textbox* will be enabled, and the *listening port on the PC textbox* will be disabled. If both sides will need to establish the connection, then you have to specify the listening ports on both sides too, and both textboxes will be active.

There is one case when the listening port on the DS side is fixed and pre-selected for you- this is when you have specified an inband access method for this DS. In this case you have already specified the listening port (as the access port) on the <u>target DS step</u> of the *Wizard* (listening port and the access port are the same for inband mode).

Once the listening port on one side is known, the Wizard sets the destination port on the other side accordingly. If the *VSP* will need to connect to the DS the <u>destination port</u> on the *VSP* will be the same, as the value of the <u>**Port Number (PN) setting**</u> on the DS side. Likewise, if the DS will have to connect to the *VSP* the <u>**Destination Port (DP) setting**</u> on the DS will be the same as the <u>local port number</u> on the *VSP*.

#### How the listening port numbers are chosen

In most cases the choice of listening ports is automatic so when you get to this step suggested port numbers are already entered by the *Wizard*.

On the *VSP* side the number is calculated as 998+ the number of COM. For example, if you are dealing with COM3 then the *Wizard* will suggest the number of 998+3=1001*. Tying the listening port number to the *VSP* name provides a simple and effective way of making sure that all *VSP*s on your system use a different listening port (listening port cannot be shared between the *VSP*s).

On the DS side you can choose any port of your liking, except the 65535 (65535 is a special command port). What the *Wizard* is showing you by default is the default value of the **Port Number (PN) setting** of the DS (1001).

The only reason to change suggested port numbers is if your network's firewall bans most of the traffic so only specific ports are opened for communications. In this case you may need to adjust the port numbers to the requirements of your network.

* There is no any special reason for this, we cannot even remember why we start from 998.

# On-the-fly commands

On this step you decide whether the PC application will be controlling the setup of the serial port of the DS.

Tibbo Connection Wizard	- V3.12
	Would you like to enable on-the-fly commands?
	<ul> <li>No, disable on-the-fly commands</li> <li>Yes, enable on-the-fly commands, use out-of-band access method</li> <li>Yes, enable on-the-fly commands, use inband access method</li> </ul>
	< Back Next> Help Cancel

The VSP-to-DS connection can be arranged in such a way that the serial port of the DS is always setup as required by the "serial" application. For example, if the application that opens the *VSP* selects the baudrate of 9600 bps, then the baudrate of the DS serial port is immediately set to this baudrate as well.

This functionality is delivered through the so-called on-the-fly commands (or, more officially, <u>network-side parameters</u>). Just like programming commands, on-the-fly commands can be sent using <u>out-of-band</u> or <u>inband</u> access method, so you have a total of three choices:

- No, disable on-the-fly commands. On-the-fly commands are not sent at all, the DS is not aware of the serial port settings required by the application and is running with "permanent" serial parameters defined through the <u>serial settings</u>. For example, even if the application requires 9600 bps, but the <u>Baudrate (BR) setting</u> of the DS is programmed to 5 (38400 bps), the serial port of the DS will be running at 38400.
- Yes, enable on-the-fly commands, use out-of-band access method. Onthe-fly commands will be sent as UDP datagrams to the command port 65535 of the DS. This access method is suitable for all local Device Servers. It will also work with remote Device Servers unless the UDP traffic is banned by the network routers (firewalls, etc). We suggest that you select this option whenever possible.
- Yes, enable inband on-the-fly commands, use inband access method. Onthe-fly commands will be sent through the TCP connection established to the data port of the DS (this is the port number defined by the <u>Data Port Number (PN) setting</u>). This method can be used in situations when out-of-band on-the-fly commands cannot get through.

# In certain cases the *Wizard* will automatically disallow the out-of-band option:

- If you have specified inband access on the <u>target DS</u> step of the *Wizard* then the *Wizard* will assume that this is because out-of-band access is impossible. Since the *VSP* will be running on the same PC as this *Wizard*, the same constraints (probably) apply to the *VSP* as well, so *Wizard* disallows out-of-band access.
- If the Wizard has decided that the VSP is to run in the server routing mode then

the VSP cannot sent out-of-band commands too. This is because sending out-ofband commands would be like establishing outgoing UDP "connections" to the DS, and selected routing mode doesn't allow this. On the contrary, inband on-the-fly commands are OK- after the DS connects to the VSP the latter can send these commands across this existing data connection.

If you choose to disable on-the-fly commands the *Wizard* will select either "disabled" or "disabled (with FF escape)" <u>on-the-fly mode</u> on the *VSP* side depending on how the DS is being accessed for programming (you have selected this on the <u>target DS</u> step of the *Wizard*). See <u>disabled (with FF escape) mode</u> for details.

Enabling on-the-fly commands also has another effect: it allows the <u>status of RTS, CTS, DTR, and DSR lines</u> to be transmitted between the *VSP* and the DS.

More information regarding on-the-fly commands

- Serial port and serial communications (Firmware Manual)
- On-the-fly (network-side) parameters and instructions (Firmware Manual)
- On-the-fly commands (VSPD and VSP Manager Manual)

## Parameters for the serial port of the DS

This step comes in two options: you are either requested to input communication parameters for the serial port of the DS (right screenshot) or you are shown a screen informing you that this information is not required (left screenshot).

	Serial Settings	for the Device Server	×
	Serial Settings		Serial Settings for the Device Server
	RTS/CTS flow control	1-Local	
	Baud rate	5- 38400 bps	
F	Parity	0-None	
Y	Data bits	1-8 bits	a need to specify permanent communications parameters al port of this Device Server. This is because you have
S			
			how this screen in the future
	< Back Next	> Help Cancel	

Values entered on this screen are saved into the <u>serial settings</u> of the DS. Once set, they remain unchanged even after the DS is switched off. The serial port of the DS will always use these values unless temporary overriding parameters are received from the *VSP* (in the form of the on-the-fly commands- if you have enabled them on the <u>previous step</u>).

#### The screen with permanent serial port values is shown in two cases:

- You have disabled on-the-fly commands on the <u>previous step</u> of the *Wizard*. This means that the DS won't be aware of the serial parameters required by the application and will use the permanent values you are to set now.
- You have enabled on-the-fly commands, but the Wizard <u>has decided</u> earlier that the **Routing Mode (RM) setting** of the DS is to be either 2 (client) or 1 (server/client). This deserves an explanation- see below for details.

The empty screen is shown when on-the-fly commands are enabled and the **<u>Routing Mode (RM) setting</u>** of the DS is to be 0 (server). Follows is the explanation on why this is so.

#### When the "permanent" serial port parameters are relevant or irrelevant

When the DS is in the server **Routing Mode** its serial port is not opened until an incoming data connection is received from the network host (*VSP* in our case)*. When on-the-fly commands are enabled the *VSP* sends on-the-fly commands to the DS as soon as the *VSP* is opened**. Therefore, the serial port of the DS is configured with on-the-fly commands right when it is opened. This means, that the "permanent" values defined by the <u>serial settings</u> are never actually used.

It's a different story when the **Routing Mode** of the DS is server/client or client. In this case the serial port of the DS is opened right from the moment the DS is powered up*. This means, that the serial port is opened *before* the *VSP* is opened and the on-the-fly commands are sent to the DS. Therefore, there is a chance that the DS will receive some serial data before the serial port is configured by the *VSP*. This is why the parameters defined by the <u>serial settings</u> are not irrelevant***!

* This is described in the opened and closed states of the serial port topic.

** Unless the VSP is in the server <u>routing mode</u> but this cannot be so for the case in question: if the DS is in the server routing mode then the VSP has to be in the client or client/server mode!

*** Of course, when the VSP is opened it will still send the on-the-fly commands and the data received before that can simply be ignored by the application. In this case you can still say that it doesn't matter what the permanent settings of the serial port are.

## Programming inaccessible DS

If this screen is shown then you have specified on the <u>target DS step</u> step that the *Device Server is not accessible from this PC*. Now you have to decide how you will setup this DS.

Tibbo Connection Wizard	How would you like to finish the programming of inaccessible Device Server?	2
	<ul> <li>Generate configuration script file and configure the Device Server later</li> <li>Configure the Device Server now via the serial port</li> </ul>	would you like to finish the programming of inaccessible Device Server? herete configuration script file and configure the Device ver later
	Path to configuration script file: Browse	Vigure the Device Server now via the serial port unications Port (COM1) unications Port (COM2)
	< Back Next> Help Cancel	< Back Next > Help Cancel

#### There are two choices:

- **Generate configuration script file and configure the Device Server later**. The script file can later be fed into the *Connection Wizard*, possibly running on a *different* PC (see <u>finishing remote job</u>). Choose this option if you cannot physically bring the DS to this PC for programming. Input the path and filename for the script file and press *Next*.
- **Configure the Device Server now via the serial port**. Choose this option if you can temporary bring the DS to this PC for programming. Connect the serial port of the DS to the unused COM port of your PC (using <u>WAS-1455</u> or similar cable), make sure the DS is powered up and press the <u>setup button</u>* (this will put the DS into the <u>serial programming mode</u>). Click *Next* to continue (the *Wizard* will read out current setting values of the DS).

#### Note:

*mode pattern* (shown on the left) when the serial port of the DS is in the serial programming mode (click here to see all available patterns).

* On EM100, EM120, EM200, EM202- pull the <u>MD line</u> low for at least 100ms.

## Application-to-DS link

This job is selected by choosing *configure a Device Server for direct communications with an application on this PC* from the <u>list of available jobs</u>.

When performing this job the *Connection Wizard* configures the DS of your choice to work with the "network" software application* on this PC. Use this job if you want to make your PC application communicate directly with the DS and the serial device behind it.

When working on this job the *Wizard* can only setup the DS side of the link. It is your responsibility to setup the software as needed (expected by the *Wizard*).

* I.e. an application that is capable of communications through the TCP/IP networks. If your application can only communicate through COM ports use the <u>VSP-to-DS</u> connection instead.

## Target DS

On this step you select the DS that the application on this PC will be communicating with. Notice, that the *Wizard* can only setup the DS side of the link. It is your responsibility to correctly setup the PC application!

Tibbo Connection Wizard	- V3.12 ×
	Specify the Device Server
	C Device Server is not accessible from this PC
	C Device Server is accessible from this PC
	Destination IP-address:
	192 . 168 . 100 . 93
	Access method:
	Out-of-Band (UDP)
	Access port:
	65535
	Select from the list
	< Back Next > Help Cancel

#### In most cases you complete this step as follows:

- Select Device Server is accessible from this PC.
- Click *Select DS button* and choose the DS from the list. The *button* brings up the *dialog*, similar to the *main window* of the <u>DS Manager</u>. In fact, it is the *DS Manager*, with the following two differences:
  - There is an additional *Select button*. To select a particular DS single-click on the DS in the *device list* (in the <u>auto-discovery</u> or <u>address book</u> access mode) and press *Select*. Alternatively, you can double-click on the DS in the *device list*.
  - The <u>COM access mode</u> is not available when the *DS Manager* is called from within *Wizard*. This is because you are choosing a network destination so the DS has to be selected from the list of devices, accessible through the network!
- Click Next.

This step provides a choice of several access options for the target DS- read additional info on accessing the DS for more information.

When you click *Next* the *Wizard* attempts to contact the target DS and verifies if this DS is local or remote. The DS of your choice must be available on the network, or the *Wizard* won't allow you to continue. Moreover, the IP-address of this DS

must be reachable*. If everything is OK the *Wizard* reads out all current setting values of this DS.

#### What if the DS is not visible from the PC

If the PC and the DS are located on different network segments it may well be that the DS is not "visible" from this PC but the PC is visible from the DS. This is normal as many networks are not symmetrical. For example, if the PC has a public (real) IP-address and the DS is located on a firewalled network segment then the DS can connect to the PC (application), but the PC (application) cannot connect to the DS.

To specify that the DS is not visible from this PC select the *Device Server is not* accessible from this PC option and click Next.

#### There are two implications of this choice:

- In this application-to-DS connection it is the DS that will always be connecting to the application, since the application cannot connect to the DS.
- The *Wizard* won't be able to setup the DS through the network (this is because it cannot "see" the DS). You will have a chance to setup this inaccessible DS through its serial port or through a temporary network connection. You will be given a choice to do this <u>within current Wizard job</u> or generate a *configuration script* and finish the setup later, using the <u>finish remote job</u> feature of the *Connection Wizard*.

* The DS Manager and the Connection Wizard have the ability to "see" local Device Servers even if the IP-address of these devices is unreachable (this is done by using broadcast communications- read about this <u>here</u>). The reason why the Wizard demands that the Device Server has a proper IP-address is because the PC application will have to establish a real data connection with this DS and that **requires** a reachable IP-address.

#### Additional info on accessing the DS

This topic provides additional information on the access options for the target DS.

The target DS can be selected from the list (using *Select DS button*) or its IPaddress and access parameters can be input manually. The first option is usually more convenient and requires less manual input and decisions on your behalf.

Besides the IP (or MAC) you need to specify the *access method* and *access port* for this DS. Access method is the way the *Wizard* will access the DS in order to program it. Access port is the port to which the *Wizard* will send its programming commands. These options are not directly related to how the application will be accessing the DS, they just specify how the *Wizard* is going to access the DS.

## There are two access methods:

- When <u>out-of-band (UDP) access method</u> is selected the *Wizard* communicates with the DS using command UDP datagrams sent to the command port 65535 of the DS. Out-of-band commands offer a primary way of network programming that requires no preliminary setup on the DS side. This access method is suitable for all local Device Servers. It will also work with remote Device Servers unless the UDP traffic is banned by the network routers (firewalls, etc).
- When <u>inband (TCP) access method</u> is selected the *Wizard* communicates with the DS by sending commands through the TCP connection established to the data port of the DS (this is the number defined by the <u>Port Number (PN) setting</u> of the DS). Inband (TCP) commands provide a secondary method of network

programming that can be used in situations when out-of-band UDP access is impossible (for remote Device Servers). The downside is that a certain preprogramming must be done on the DS before it can be accessed using inband access method- read <u>preparing the DS for inband access</u> for step-by-step instructions.

When you select the DS from the <u>address book</u> (through the *Select DS* button) the *Wizard* copies the access method and access port from the address book entry.

## Initiator of the data exchange

On this step you select which side of the application-to-DS connection will be the first to send the data.

Tibbo Connection Wizard - V	V3.12	×
	Which side of this connection will have to send the data first?	
	Your application	
	C Device Server	
	C Any side (your application or Device Server)	
	< Back Next > Help Cancel	

Notice, that asking "who will be the first to send the data?" is not the same as asking "which side will be establishing the data connection to the other side?"*.

#### There are three choices:

- Your application. Select this option if it is the application software that will be sending the first data. This is typical for the kind of serial devices that we, as Tibbo, came to call "slave terminals". Such terminals communicate with the PC software using some sort of command-reply communication protocol and it is the PC that usually plays the role of a "master": the terminal won't send any data unless the PC sends a command first (and this is the "first data"!).
- **Device Server.** Select this option if it is the serial device that will be sending the first data. This is typical for the kind of serial devices that we call "scanners" (readers)**. This class of serial devices differs from "slave terminals" in that they send out the data spontaneously, without any prior prompt from the PC software.
- **Any side.** In some systems the data may first come from any side. For example, there are some "active terminals" out there that can send out the data spontaneously and at the same time respond to the commands from PC. Also choose this option if you are not sure which side of your system sends the data first.

* Although these two questions are connected- see how the Wizard decides which side open the connection.

** Meaning barcode scanners or magnetic card readers.

## Netmask & gateway for the DS

This step comes in two options: you are either requested to input the gateway and netmask information that the DS needs to connect to this PC (right screenshot) or you are shown a screen informing you that the entry of this data is not necessary (left screenshot).

Tibbo Connection Wizard -		×
	Gateway and netmask settings for the Device Server	×
	C This PC is not accessible from the Device Server	ay and netmask settings for the Device Server
	This PC is accessible from the Device Server	
	Gateway IP-address:	o need to specify the gateway and netmask for this arver. This may be because:
	127 . 0 . 0 . 1	ice Server is not going to establish outgoing connections,
	Netmask:	as of this data lank are located on the same network
		nt show this screen in the future
	< Back Next> Help Cancel	
		<back next=""> Help Cancel</back>

# The gateway and netmask need only be set when two conditions are observed:

- The DS may need to (or must) establish data connections to the PC (this is determined by the *Wizard*).
- The DS and the PC are located on different network segments (there is at least one router between the PC and the DS).

Setting gateway and netmask information for the DS that only accepts incoming connections is not necessary*. If the DS is local there are no routers between this DS and the PC, so the gateway and netmask are not necessary even if the DS has to connect to the PC.

#### How to set the gateway and netmask

There is no straight way of finding out what data to enter. You need to obtain this information from somebody with a knowledge of your network's topology. Here is one hint, though.

If the IP-address of the target DS is configured through DHCP (**DHCP (DH) setting** is 1 (enabled)), then the DHCP server might have configured this Device Server's gateway and netmask as well. When you reach this step of the *Connection Wizard* the *Gateway IP-address* and the *Netmask fields* are filled with the data from the **Gateway IP-address (GI)** and **Netmask (NM)** settings of the target DS**. This

data may already be correct!

#### What if the PC is not visible from the DS

When the PC and the DS are located on different network segments it may well be that the PC is not "visible" from this DS. This is normal as many networks are not symmetrical. For example, if the DS has a public (real) IP-address and the PC is located on a firewalled network segment then the PC (application) can connect to the DS, but the DS cannot connect to the PC (application).

To provide for this situation the option box at the top of this step's screen allows you to specify that *this PC is not accessible from the DS*. Choose the option if this is so and if the option is available.

The option to specify that the PC is not accessible from the DS is disabled (not allowed to be chosen) when you have previously specified (at the <u>target DS</u> step) that the DS is not accessible from the PC. The reason is obvious: at least one side of the connection must be able to "see" the other side!

After you have completed this step the *Wizard* has enough information to <u>decide</u> which side of the application-to-DS link will be responsible for establishing the data connections.

* We found that some people hold a passionate belief that these parameters are necessary in any case. This is not true! If your network device doesn't have to establish outgoing connections you never have to bother about the gateway and netmask!

** Unless you have specified that "the DS is inaccessible through the network" at the <u>target DS</u> step of the Wizard, in which case the Wizard cannot obtain this information.

## How the Wizard decides who opens connections

When you click *Next* on the <u>netmask and gateway step</u> the *Wizard* has enough information to decide which side of the application-to-DS connection will be responsible for establishing data connections with the other side.

In doing this, the *Wizard* decides on the future values of the **Routing Mode (RM)** and **Connection Mode (CM)** settings of the DS. With <u>VSP-to-DS connections</u>, the *Wizard* would also be able to set the <u>routing</u> and <u>connection</u> modes on the *VSP* side. For the application-to-DS connection, the *Wizard* can only setup the DS side. It is your responsibility to set the application side as expected by the *Wizard*. For the discussion below we will assume that the application also has "imaginary" <u>routing</u> and <u>connection</u> options, similar in function to the ones found in *VSP*. Here is what this means: 261

VSP properties	Corresponding expected application behavior
Server routing mode	Once the application is opened it is ready to accept incoming connections. The application never establishes outgoing connections.
Server/client routing mode	Once the application is opened it is ready to accept incoming connections and establish outgoing connections to the specified IP-address and port number (whichever happens first)
Client routing mode	The application only establishes outgoing connections to the specified IP-address and port number. Incoming connections are not accepted
On data connection mode	The application establishes an outgoing connection when it has the data to send (that is, if outgoing connections are allowed)
Immediate connection mode	The application establishes an outgoing connection as soon as it is started, even if there is no data to transmit (that is, if outgoing connections are allowed)

In general, the *Wizard* tries to follow the natural flow of data between the application and the serial device. In the <u>initiator of the data exchange</u> step you have already specified which side sends the data first, so the *Wizard* will have this side open a data connection to the other side as soon as the first data needs to be sent from this side of the connection.

For example, if you are dealing with the "scanner" type of serial device, then the first data is always sent by the serial device. Therefore, the *Wizard* will program the **Routing Mode (RM) setting** of the DS to "client". Consequently, the DS will be opening the data connections to the PC application so the application needs to be ready to accept those connections (in *VSP* terms this is the server routing mode).

Lines 1-3 of the following table illustrate what's just been said. Notice that the **<u>Connection Mode (CM) setting</u>** is always set to "on data". As the first data is received (by one side of the link) it triggers an attempt to open a data connection with the other side of the link:

				Software M	anuals 262	
		Which side can "see" the other side of the connection	Which side sends the first data	Routing Mode on the appl**.	Connection Mode on the appl**.	Routing Mode on the DS
	1	Both sides can see each other	Application	Client	On data	Server
	2	Both sides can see each other	Serial device	Server		Client (server/clien
	3	Both sides can see each other	Any side	Server/client	On data	Server/clien
	4	Only PC can see the DS	Application	Client	On data	Server
	5	Only PC can see the DS	Serial device	Client	Immediately	Server
	6	Only PC can see the DS	Any side	Client	Immediately	Server
	7	Only DS can see the PC	Application	Server		Client
©2000-2004	8	Only DS can see the PC	Serial device	Server		Client

The situation becomes more complicated when only one side of the connection can "see" the other side. Consider the case in line 7 of the table. The application has to send the data first, but it cannot "see" the DS. Therefore, even when the application needs to transmit the data it will be unable to establish a connection to the DS!

The way out is to have the DS connect to the PC (application) as soon as the DS is powered (so, the <u>Connection Mode (CM) setting</u> is 0 (immediately)). This way, by the time the application needs to send the first data to the DS the connection is already established. This kind of connections are called "reverse".

A special comment should be made on line 2 of the table, where the Routing Mode on the DS is designated to be either "client" or "server/client". The *Wizard* chooses "client" if DS programming is effected using <u>out-of-band access method</u> (you have selected this on the <u>target DS</u> step of the *Wizard*). If <u>inband access method</u> was selected the *Wizard* will set the mode to "server/client". This is because choosing "client" would cause it DS to reject all incoming connections in the future and this means that you wouldn't be able to program the DS using inband access in the future!

* This is the case when you have specified that "the Device Server is not accessible from this PC" on the <u>target DS step</u>, or that "the PC is not accessible from this Device Server" on the <u>netmask and gateway for the DS step</u> of the Wizard.

** "Imaginary" options of the PC application.

## **Transport protocol & listening ports**

On this step you select the protocol that will be used for exchanging the data between the application and the DS. You also choose the listening port number on the side(s) of the link that will be receiving incoming connections from the other side.

Tibbo Connection Wizard - V	3.12	×
	Specify transport protocol and listening ports	
	C UDP/IP transport protocol	
	TCP/IP transport protocol	
	Listening port on the PC application:	
	Listening port on the Device Server:	
	1001	
000		
	< Back Next> Help Cancel	

In general, we recommend you to stick to the TCP/IP, unless the application requires that the UDP/IP protocol is used. Since the *Wizard* can only setup the transport protocol on the DS side of this connection, it is your responsibility to

setup the application side accordingly.

There is one case when the UDP/IP selection is not available and the TCP protocol is pre-selected for you- this is when you have specified an inband access method on the <u>target DS step</u> of the *Wizard*. Since inband access requires a TCP/IP data connection with the DS you must use TCP/IP transport protocol!

#### **Listening ports**

This screen also provides an option of entering the port number on the listening side(s) of application-to-DS link. By now the *Wizard* has already decided <u>which side opens the connections</u>. Connecting side needs to know the number of the listening port on the other side. For example, if it is the PC application that will always be connecting to the DS, then you only have to specify the listening port on the *DS* side. Consequently, the *listening port on the DS textbox* will be enabled, and the *listening port on the PC textbox* will be disabled. If both sides will need to establish the connection, then you have to specify the listening ports on both sides too, and both textboxes will be active.

There is one case when the listening port on the DS side is fixed and pre-selected for you- this is when you have specified an inband access method for this DS. In this case you have already specified the listening port (as the access port) on the <u>target DS step</u> of the *Wizard* (listening port and the access port are the same for inband mode).

Once again, proper setup of the application side is your responsibility. For example, if you choose the listening port on the DS to be 1001 the *Wizard* will program this number into the **Port Number (PN) setting** on the DS automatically, and your job will be to set the destination port number on the application side to 1001. Likewise, if you choose the listening port on the application side to be 3500, then the *Wizard* will automatically set the **Destination Port (DP) setting** of the DS to 3500, but you need to make sure that the same listening number is actually selected in the application.

#### How the listening port numbers are chosen

You can choose any port numbers of your liking. The only limitations are:

- PC applications often have fixed destination and/or listening ports so the DS settings may need to be adjusted to suit the requirements of your application.
- Certain firewall or router setup may require you to use specific port numbers for communications between the application and the DS.

The DS can be adjusted to use any destination and local port numbers. The only limitation is that the **<u>Port Number (PN) setting</u>** cannot be programmed to 65535 (this is a special command port number).

## Parameters for the serial port of the DS

On this step you select communication parameters for the serial port of the DS.

Serial Settings	for the Device Server	
Serial Settings		T.
RTS/CTS flow control	0- Disabled or remote	
Baud rate	5- 38400 bps	
Parity	0-None	
Data bits	1-8 bits	
< Back Next	> Help Cancel	

Unlike with the <u>VSP-to-DS link</u>, the serial port parameters of the DS, involved in the application-to-DS link, cannot be adjusted via on-the-fly commands. You have to define fixed parameters that will be used by the DS at all times.

## **Programming inaccessible DS**

If this screen is shown then you have specified on the <u>target DS step</u> step that the *Device Server is not accessible from this PC*. Now you have to decide how you will setup this DS.

Tibbo Connection Wizard	- V3.12	×	
	How would you like to finish the programming of inaccessible Device Server?		×
	<ul> <li>Generate configuration script file and configure the Device Server later</li> </ul>		would you like to finish the programming of inaccessible Device Server?
	C Configure the Device Server now via the serial port		verate configuration script file and configure the Device ver later
	Path to configuration script file: Browse	1	figure the Device Server now via the serial port
			unications Port (COM1) unications Port (COM2)
	< Back Next > Help Cancel		
		< B.	ack Next> Help Cancel

#### There are two choices:

- **Generate configuration script** (left screenshot). The script file can later be fed into the *Connection Wizard*, possibly running on a *different* PC (see <u>finishing remote job</u>). Choose this option if you cannot physically bring the DS to this PC for programming. Input the path and filename for the script file (left screenshot) and press *Next*.
- **Configure the DS through the serial port** (right screenshot). Choose this option if you can temporary bring the DS to this PC for programming. Connect the serial port of the DS to the unused COM port of your PC (using <u>WAS-1455</u> or similar cable), make sure the DS is powered up and press the <u>setup button</u>* (this will put the DS into the <u>serial programming mode</u>). Click *Next* to continue (the *Wizard* will read out current setting values of the DS).

#### Note:

Status LEDs of the DS are playing a *serial programming* mode pattern (shown on the left) when the serial port of the DS is in the <u>serial programming mode</u> (click <u>here</u> to see all available patterns).

* On EM100, EM120, EM200, EM202- pull the <u>MD line</u> low for at least 100ms.

## DS-to-DS link

This job is selected by choosing *create a link between two Device Servers* from the <u>list of available jobs</u>.

When performing this job the *Connection Wizard* configures two Device Servers of your choice to communicate with each other. This effectively creates a "virtual serial cable" that interconnects the serial ports of these two Device Servers. Not only the serial data, but also the state of the RTS, CTS, DTR, and DSR signals can be seamlessly transmitted across this virtual cable!

#### There are two possible applications for the DS-to-DS link:

- To interconnect two non-PC devices (shown on the diagram above).
- To interconnect a serial device with a non-*Windows* PC software. Tibbo <u>Virtual Serial Ports</u> can only work under *Windows* so if you have a case where you need to network-enable a system involving a non-*Windows* software (i.e. DOS, etc.) you can do this by using a second DS located on the PC side.

In this case the software still communicates through a real COM port, but the DS on the PC side connects this COM to the network. This is effectively the same kind of "virtual serial cable" connection. Device Servers do not know (nor care) what kind of serial devices are communicating through them.

To setup the DS-to-DS link through the *Wizard* you need to use a *Windows* PC the *Wizard* will run on (shown on both diagrams as "configuration" PC). Once the link is created this PC is no longer needed as it is not directly participating in the data link.

One limitation that the *Wizard* applies to the DS-to-DS link is that at least one of the Device Servers in the link must reside on the same network segment* as the configuration PC. The other DS may be located anywhere (be local or remote).

* I.e. there must be no routers (firewalls, etc.) between the configuration PC and the DS.

## DS #1 (must be local)

On this step you select the first DS in the DS-to-DS link (it is called the "DS #1").

Tibbo Connection Wizard -	V3.12
	Specify the Device Server #1
	C Device Server is not accessible from this Network Segment
	C Device Server is accessible from this Network Segment
	Destination IP-address:
	192 . 168 . 100 . 91 Access method:
	Out-of-Band (UDP)
	65535
	Select from the list
	<back next=""> Help Cancel</back>

As <u>explained earlier</u>, the DS #1 must be local, i.e. it must be located on the same network segment as the PC on which this *Wizard* is running (DS #2 can be local or remote). Because of that, the accessibility option is fixed at *Device Server is assessable from this network segment* (if the DS is local it is definitely must be accessible).

Several access options that exist for the DS are also disabled because they are only necessary when you are dealing with the remote DS and the DS #1 cannot be remote.

The only editable option is the IP-address of the DS. You can input this IP-address manually or select the DS from the list:

- Click *Select DS button* and choose the DS from the list. The *button* brings up the *dialog*, similar to the *main window* of the <u>DS Manager</u>. In fact, it is the *DS Manager*, with the following two differences:
  - There is an additional *Select button*. To select a particular DS single-click on the DS in the *device list* (in the <u>auto-discovery</u> access mode) and press *Select*. Alternatively, you can double-click on the DS in the *device list*.
  - The <u>address book</u> and <u>COM access mode</u> are not available. The DS #1 must be local and so you must be able to find it in the <u>auto-discovery</u> mode.
- Click Next.

When you click *Next* the *Wizard* attempts to contact the target DS and makes sure that the DS is local and reachable*. If everything is OK the *Wizard* reads out all current setting values of this DS.

* The DS Manager and the Connection Wizard have the ability to "see" local Device Servers even if the IP-address of these devices is unreachable (this is done by using broadcast communications- read about this <u>here</u>). The reason why the Wizard demands that the DS #1 has a proper IP-address is because the DS #2 will have to establish a real data connection to this DS and that <u>requires</u> a reachable

#### IP-address.

## DS #2 (can be local or remote)

On this step you select the second DS in the DS-to-DS link (it is called the "DS #2").

Tibbo Connection Wizard -	V3.12
	Specify the Device Server #2
	Device Server is not accessible from this Network Segment     Device Server is accessible from this Network Segment     Destination IP-address:         211 . 22 . 83 . 108         Access method:         Out-of-Band (UDP)         Access port:         65535
	Select from the list

The DS #2 can be located anywhere, i.e. be local or remote.

#### In most cases you complete this step as follows:

- Select Device Server is accessible from this network segment.
- Click *Select DS button* and choose the DS from the list. The *button* brings up the *dialog*, similar to the *main window* of the <u>DS Manager</u>. In fact, it is the *DS Manager*, with the following two differences:
  - There is an additional *Select button*. To select a particular DS single-click on the DS in the *device list* (in the <u>auto-discovery</u> or <u>address book</u> access mode) and press *Select*. Alternatively, you can double-click on the DS in the *device list*.
  - The <u>COM access mode</u> is not available when the *DS Manager* is called from within *Wizard*. This is because you are choosing a network destination for the *VSP* so the DS has to be selected from the list of devices, accessible through the network!
- Click Next.

This step provides a choice of several access options for the DS #2- read additional info on accessing the DS for more information.

When you click *Next* the *Wizard* attempts to contact the target DS and verifies if this DS is local or remote. The DS of your choice must be available on the network, or the *Wizard* won't allow you to continue. Moreover, the IP-address of this DS must be reachable*. If everything is OK the *Wizard* reads out all current setting values of this DS.

#### What if the DS #2 is not visible from the PC

If the PC and the DS #2 are located on different network segments it may well be that the DS #2 is not "visible" from this network segment (and hence, from the DS #1) but the DS#1 is visible from the DS #2. This is normal as many networks are not symmetrical. For example, if the DS #1 has a public (real) IP-address and the DS #2 is located on a firewalled network segment then the DS #2 can connect to the DS #1, but the DS#1 (and this PC) cannot connect to the DS #2.

To specify that the DS is not visible from this PC select the *Device Server is not accessible from this network segment* option and click *Next*.

#### There are two implications of this choice:

- In this DS-to-DS connection it is the DS #2 that will always be connecting to the DS #1, since DS #1 cannot connect to the DS #2.
- The *Wizard* won't be able to setup the DS through the network (this is because it cannot "see" the DS). You will have a chance to setup this inaccessible DS through its serial port or through a temporary network connection. You will be given a choice to do this <u>within current Wizard job</u> or generate a *configuration script* and finish the setup later, using the <u>finish remote job</u> feature of the *Connection Wizard*.

* The DS Manager and the Connection Wizard have the ability to "see" local Device Servers even if the IP-address of these devices is unreachable (this is done by using broadcast communications- read about this <u>here</u>). The reason why the Wizard demands that the DS #2 has a proper IP-address is because the DS #1 will probably have to establish a real data connection with this DS and that <u>requires</u> a reachable IP-address.

#### Additional info on accessing the DS

This topic provides additional information on the access options for the DS #2.

The DS #2 can be selected from the list (using *Select DS button*) or its IP-address and access parameters can be input manually. The first option is usually more convenient and requires less manual input and decisions on your behalf.

Besides the IP (or MAC) you need to specify the *access method* and *access port* for this DS. Access method is the way the *Wizard* will access the DS #2 in order to program it. Access port is the port to which the *Wizard* will send its programming commands. These options are not directly related to how the application will be accessing the DS, they just specify how the *Wizard* is going to access the DS.

#### There are two access methods:

- When <u>out-of-band (UDP) access method</u> is selected the *Wizard* communicates with the DS using command UDP datagrams sent to the command port 65535 of the DS. Out-of-band commands offer a primary way of network programming that requires no preliminary setup on the DS side. This access method is suitable for all local Device Servers. It will also work with remote Device Servers unless the UDP traffic is banned by the network routers (firewalls, etc).
- When <u>inband (TCP) access method</u> is selected the *Wizard* communicates with the DS by sending commands through the TCP connection established to the data port of the DS (this is the number defined by the <u>Port Number (PN) setting</u> of the DS). Inband (TCP) commands provide a secondary method of network programming that can be used in situations when out-of-band UDP access is impossible (for remote Device Servers). The downside is that a certain pre-programming must be done on the DS before it can be accessed using inband

access method- read <u>preparing the DS for inband access</u> for step-by-step instructions.

<u>Inband access</u> method is usually utilized when <u>out-of-band access</u> is not possible (i.e. because of restrictions on the network). To allow future programming of the DS #2 the *Wizard* will preserve inband access in the DS #2 and this means that the **Inband (IB) setting** of the DS will be kept at 1 (enabled). Because in this mode ASCII characters with code 255 (FF) are handled in a special way the **Inband (IB) setting** of the DS #1 will also be set to 1 (enabled). This will ensure correct transmission of FF characters between the Device Servers.

When you select the DS #2 from the <u>address book</u> (through the *Select DS* button) the *Wizard* copies the access method and access port from the address book entry.

## Initiator of the data exchange

On this step you select which side of the DS-to-DS connection will be the first to send the data.

🐚 Tibbo Connection Wizard -	V3.12	×
	Which side of this connection will have to send the data first?	
	C Device Server #1	
	C Device Server #2	
	C Any side (Device Server #1 or Device Server #2)	
	<back next=""> Help Cancel</back>	

Notice, that asking "who will be the first to send the data?" is not the same as asking "which side will be establishing the data connection to the other side?"* When making your choice imagine that there is no network at all and that two serial devices are interconnected via the serial cable. Now, which side sends the data first?

#### There are three choices:

- **Device Server #1.** Select this option if the first data will be sent by the serial device connected to the DS #1.
- **Device Server #2.** Select this option if the first data will be sent by the serial device connected to the DS #2.
- **Any side.** In some systems the first data may come from any side. Also choose this option if you are not sure which side of your system sends the data first.
- * Although these two questions are connected- see

how the Wizard decides which side open the connection.

## Netmask & gateway for the DS #1

This step comes in two options: you are either requested to input the gateway and netmask information that the DS #1 needs to connect to the DS #2 (right screenshot) or you are shown a screen informing you that the entry of this data is not necessary (left screenshot).

Tibbo Connection Wizard	- V3.12	
	Gateway and netmask settings for the Device Server #1	×
	$\sigma_{\rm B1}^{\rm Device Server #2 is not accessible from the Device Server _ {\rm B1}$	and netmask settings for the Device Server #1
	C Device Server #2 is accessible from the Device Server #1	
<b>N</b>	Gateway IP-address:	o need to specify the galeway and netmask for this rver. This may be because:
	Netmask:	ice Server is not going to establish outgoing connections,
	0.0.0.0	is of this data lank are located on the same network
	Set as on this PC	
		nt show this screen in the future
	<back next=""> Help Cancel</back>	
		<back next=""> Help Cancel</back>

# The gateway and netmask need only be set when two conditions are observed:

- The DS #1 may need to (or must) establish data connections to the DS #2.
- The DS #1 and the DS #2 are located on different network segments (there is at least one router between them).

Setting gateway and netmask information for the DS that only accepts incoming connections is not necessary*. If both Device Servers are located on the same network segment, the gateway and netmask are not necessary even if the DS #1 has to connect to the DS #2.

#### How to set the gateway and netmask

Since the DS #1 is located on the same network segment with this PC the gateway and netmask values that need to be set for this DS are probably the same as the ones set for the PC. Clicking *Set as on the PC button* copies the gateway and netmask information from the PC.

If the IP-address of the DS #1 is configured through DHCP (**DHCP (DH) setting** is 1 (enabled)), then the DHCP server might have configured this Device Server's gateway and netmask as well. When you reach this step of the *Connection Wizard* the *Gateway IP-address* and the *Netmask fields* are filled with the data from the **Gateway IP-address (GI)** and **Netmask (NM)** settings of the target DS. This data may already be correct!

#### What if the DS #2 is not visible from the DS #1

When the DS #1 and the DS #2 are located on different network segments it may well be that the DS #2 is not "visible" from the DS #1. This is normal as many networks are not symmetrical. Since the DS #1 and this PC are located on the same network segment the visibility of the DS #2 is the same for the PC and the DS #1. This is why the options at the top of the screen are disabled and cannot be changed:

- The *DS* #2 is accessible from the *DS* #1 is selected if you have specified that the *Device Server* #2 is accessible from this network segment on the <u>DS</u> #2 step of the *Wizard*.
- The *DS* #1 is not accessible from the *DS* #1 is selected if you have specified that the *Device Server is not accessible from this network segment* on the <u>DS #2 step</u> of the *Wizard*.

* We found that some people hold a passionate belief that these parameters are necessary in any case. This is not true! If your network device doesn't have to establish outgoing connections you never have to bother about the gateway and netmask!

## Netmask & gateway for the DS #2

This step comes in two options: you are either requested to input the gateway and netmask information that the DS #2 needs to connect to the DS #1 (right screenshot) or you are shown a screen informing you that the entry of this data is not necessary (left screenshot).

Tibbo Connection Wizard	V3.12     Gateway and netmask settings for the Device Server #2     Device Server #1 is not accessible from the Device Server #2     Device Server #1 is accessible from the Device Server #2	and netmask settings for the Device Server #2
	Gateway IP-address: 127 . 0 . 0 . 1 Netmask: 0 . 0 . 0 . 0	a need to specify the gateway and netmask for this over. This may be because: ice Server is not going to establish outgoing connections, is of this data lank are located on the same network
	< Back Next > Help Cancel	nt show this screen in the future
		Back Next> Help Cancel

# The gateway and netmask need only be set when two conditions are observed:

- The DS #2 may need to (or must) establish data connections to the DS #1.
- The DS #2 and the DS #1 are located on different network segments (there is at least one router between them).

Setting gateway and netmask information for the DS that only accepts incoming connections is not necessary*. If both Device Servers are on the same network segment, the gateway and netmask are not necessary even if the DS #2 has to connect to the DS #1.

#### How to set the gateway and netmask

There is no straight way of finding out what data to enter. You need to obtain this information from somebody with a knowledge of your network's topology. Here is one hint, though.

If the IP-address of the DS #2 is configured through DHCP (**DHCP (DH) setting** is 1 (enabled)), then the DHCP server might have configured this Device Server's gateway and netmask as well. When you reach this step of the *Connection Wizard* the *Gateway IP-address* and the *Netmask fields* are filled with the data from the **Gateway IP-address (GI)** and **Netmask (NM)** settings of the DS #2**. This data may already be correct!

#### What if the DS #1 is not visible from the DS #2

When two Device Servers are located on different network segments it may well be that the DS #1 is not "visible" from the DS #2. This is normal as many networks are not symmetrical. For example, if the DS #2 has a public (real) IP-address and the DS #1 is located on a firewalled network segment then the DS #1 can connect to the DS #2, but the DS #2 cannot connect to the DS #1.

To provide for this situation the option box at the top of this step's screen allows you to specify that the DS #1 is not accessible from the DS #2. Choose the option if this is so and if the option is available.

The option to specify that the DS #1 is not accessible from the DS #2 is disabled (not allowed to be chosen) when you have previously specified (at the DS #2 step) that the DS #2 is not accessible from the DS #1. The reason is obvious: at least one side of the connection must be able to "see" the other side!

After you have completed this step the *Wizard* has enough information to <u>decide</u> which side of the DS-to-DS link will be responsible for establishing the data connections.

* We found that some people hold a passionate belief that these parameters are necessary in any case. This is not true! If your network device doesn't have to establish outgoing connections you never have to bother about the gateway and netmask!

** Unless you have specified that "the Device Server is not accessible from this network segment" at the DS #2 step of the Wizard, in which case the Wizard cannot obtain this information.

#### How the Wizard decides who opens the connection

When you click *Next* on the <u>netmask and gateway for the DS #2 step</u> the *Wizard* has enough information to decide which side of the DS-to-DS connection will be responsible for establishing data connections with the other side.

In doing this, the *Wizard* decides on the future values of the **Routing Mode (RM)** and **Connection Mode (CM)** settings of both Device Servers.

In general, the *Wizard* tries to follow the natural flow of data between the Device Servers. In the <u>initiator of the data exchange</u> step you have already specified which side sends the data first, so the *Wizard* will have this side open a data connection to the other side as soon as the first data needs to be sent.

For example, if the first data is supposed to come from the DS #1 side the Wizard

will program the **Routing Mode** of the DS #1 to 2 (client) and the **Routing Mode** of the DS #2 to 0 (server).

Lines 1-3 of the following table illustrate what's just been said. Notice that the **<u>Connection Mode (CM) setting</u>** is always set to "on data". As the first data is received (by one side of the link) it triggers an attempt to open a data connection with the other side of the link:

	Which side can "see" the other side of the connection	Which side sends the first data	Routing Mode on the DS #1	Connection Mode on the DS #1	Routing Mode on the DS #2
1	Both sides can see each other	DS #1	Client	On data	Server
2	Both sides can see each other	DS #2	Server		Client (server/client
3	Both sides can see each other	Any side	Server/client	On data	Server/clien
4	Only DS #1 can see the DS #2	DS #1	Client	On data	Server
4					Jeivei
5	Only DS #1 can see the DS #2	DS #2	Client	Immediately	Server
6	Only DS #1 can see the DS #2	Any side	Client	Immediately	Server
7	Only DS #2 can see the DS #1	DS #1	Server		Client

The situation becomes more complicated when only one side of the connection can "see" the other side*. Consider the case in line 5 of the table. The DS #2 has to send the data first, but it cannot "see" the DS #1. Therefore, even when the DS #2 receives the first data into its serial port it will be unable to establish a connection to the DS #1 and send this data!

The way out is to have the DS #1 connect to the DS #2 as soon as the DS #1 is powered up (so, the **Connection Mode (CM) setting** of this DS is to be 0 (immediately)). This way, by the time the DS #2 needs to send the first data to the DS #1 the connection is already established. This kind of connections are called "reverse".

A special comment should be made on line 2 of the table, where the Routing Mode on the DS #2 is designated to be either "client" or "server/client". The *Wizard* chooses "client" if DS #2 programming is effected using <u>out-of-band access method</u> (you have selected this on the <u>DS #2</u> step of the *Wizard*). If <u>inband access method</u> was selected the *Wizard* will set the mode to "server/client". This is because choosing "client" would cause it DS to reject all incoming connections in the future and this means that you wouldn't be able to program the DS using inband access in the future!

* This is the case when you have specified that the "Device Server is not accessible from this network segment" on the <u>DS #2 step</u>, or that the "DS #1 is not accessible from DS #2" on the <u>netmask and gateway for the DS #2 step</u> of the Wizard.

## **Transport protocol & listening ports**

On this step you select the protocol that will be used for exchanging the data between the Device Servers. You also choose the listening port number of the side(s) of the link that will be receiving incoming connections.

Tibbo Connection Wizard -	V3.12	×
	Specify transport protocol and listening ports	
	UDP/IP transport protocol     TCP/IP transport protocol	
	Listening port on the Device Server #1:	
	Listening port on the Device Server #2:	
	< Back Next> Help Cance	

In general, we recommend you to stick to the TCP/IP, unless you have a good reason (which is very rare!) why you have to use UDP/IP protocol.

There is one case when the UDP/IP selection is not available and the TCP protocol

is pre-selected for you- this is when you have specified an inband access method on the DS #2 step of the *Wizard*. Since inband access requires a TCP/IP data connection with the DS you must use TCP/IP transport protocol, or the configuration PC won't be able to access the DS #2 in the future.

#### **Listening ports**

This screen also provides an option of entering the port number on the listening side(s) of the DS-to-DS link. By now the *Wizard* has already decided <u>which side opens the connections</u>. Connecting side needs to know the number of the listening port on the other side. For example, if it is the DS #1 that will always be connecting to the DS #2, then you only have to specify the listening port on the DS #1 side. Consequently, the *listening port on the DS #2 textbox* will be enabled, and the *listening port on the DS #1 textbox* will be disabled. If both sides will need to establish the connection, then you have to specify the listening ports on both sides too, and both textboxes will be active.

There is one case when the listening port on the DS #2 side is fixed and preselected for you- this is when you have specified an inband access method for this DS. In this case you have already specified the listening port (as the access port) on the <u>DS #2 step</u> of the *Wizard* (listening port and the access port are the same for inband mode).

Once the listening port on one side is known, the *Wizard* sets the destination port on the other side accordingly. If the DS #1 will need to connect to the DS #2 the **Destination Port (DP) setting** on the DS #1 will be the same, as the value of the **Port Number (PN) setting** on the DS #2 side. Likewise, if the DS #2 will have to connect to the DS #1 the **Destination Port (DP) setting** on the DS #2 will be the same as the **Port Number (PN) setting** on the DS #1.

ration for both connection directions, so the **Destination Port** on one side will point at the **Porn Number** on the other side.

#### How the listening port numbers are chosen

You can choose any port numbers of your liking, except the 65535. This is because 65535 is a special command port. What the *Wizard* is showing you by default is the default value of the **Port Number (PN) setting** of the DS on the receiving end of the connection (1001).

The only reason to change suggested port numbers is if your network's firewall bans most of the traffic so only specific ports are opened for communications. In this case you may need to adjust the port numbers to the requirements of your network.

## Remote exchange for RTS, CTS, DTR, DSR

On this step you select whether the status of RTS, CTS, DTR, and DSR lines will be exchanged between the Device Servers.

强 Tibbo Connection Wizard -	V3.12
	Remote exchange of the control line states
	Exchange the state of RTS and CTS lines
	Exchange the state of DTR and DSR lines
	< Back Next> Help Cancel

When this feature is enabled, a change in the state of the CTS (DSR) input on one DS causes a corresponding change on the RTS (DTR) output of the other DS. In effect, this achieves compete emulation of the serial cable over the network: not only the serial data is seamlessly transmitted between the serial ports of two Device Servers, but also the control lines appear to be interconnected.

Exchange of signal states is enabled separately for the RTS/CTS and DTR/DSR signal pairs (there are two checkboxes- *exchange the state of RTS and CTS lines* and *exchange the state of DTR and DSR lines*).

If you enable the status exchange for the RTS and CTS lines you won't be able to enable RTS/CTS flow control for the serial ports of the DS (on parameters for the serial port of the DS #1 and parameters for the serial port of the DS #2 Wizard steps.

## Control line status exchange and the connection mode of the DS

Exchange of the control line states is done through **Notification (J) Messages** sent between the Device Servers. Notification messages are sent only when the data connection is already established. This means that if there is no data connection between the Device Servers remote exchange of control line states doesn't work too. This may be a problem on some serial system that may need to exchange the state of control lines even before any data is sent.

To avoid this problem the *Wizard* will program the **Connection Mode (CM) setting** of one of the Device Servers to 0 (connect immediately) whenever control line status exchange is enabled for at least one of the signal pairs (RTS/CTS or DTR/DSR). "Connect immediately" option makes the DS establish a data connection with its destination as soon as this DS is switched on. Connection is then maintained at all times and control line status exchange will also work at all times, even when no data is transmitted across the serial connection.

Notice, that the decision on the **Connection Mode** of both Device Servers has <u>already been taken before</u> and the *Wizard* might have already decided that "connect immediately" option must be enabled on one of the Device Servers (this is needed for "reverse" connections). If this is so then the "connect immediately" option will stay, no matter whether the control line status exchange is enabled on this step or not.

If the *Wizard* haven't previously decided that the "connect immediately" option is necessary for one of the Device Servers and you have opted to enable control line status exchange for at least one signal pair (RTS/CTS or DTR/DSR) then the *Wizard* will decide that the **Connection Mode (CM) setting** of the DS #1 is to be 0 (connect immediately).

## Parameters for the serial port of the DS #1

On this step you select communication parameters for the serial port of the DS #1.

Tibbo Connection Wizard		or the Device Server #1	×
	Serial Settings		
	RTS/CTS flow control	0- Disabled or remote	
	Baud rate	5- 38400 bps	
	Parity	0-None	
	Data bits	1-8 bits	
	< Back Next	> Help Cano	el

Unlike with the <u>VSP-to-DS link</u>, the serial port parameters of the DS, involved in the DS-to-DS link, cannot be adjusted via on-the-fly commands. You have to define fixed parameters that will be used by this DS at all times.

If you have previously <u>enabled status exchange for the RTS/CTS signal pair</u> then the RTS/CTS flow control option will be pre-set and fixed at *disabled or remote*. This is because the remote exchange and "local" flow control are mutually exclusive options.

# Parameters for the serial port of the DS #2

On this step you select communication parameters for the serial port of the DS #2.

Tibbo Connection Wizard		or the Device Server #2	×
	Serial Settings		
	RTS/CTS flow control	0- Disabled or remote	
	Baud rate	5- 38400 bps	
	Parity	0-None	
	Data bits	1-8 bits	
	< Back Next	> Help Cance	

Unlike with the <u>VSP-to-DS link</u>, the serial port parameters of the DS, involved in the DS-to-DS link, cannot be adjusted via on-the-fly commands. You have to define fixed parameters that will be used by this DS at all times.

If you have previously <u>enabled status exchange for the RTS/CTS signal pair</u> then the RTS/CTS flow control option will be pre-set and fixed at *disabled or remote*. This is because the remote exchange and "local" flow control are mutually exclusive options.

## **Programming inaccessible DS**

If this screen is shown then you have specified on the DS #2 step that the Device Server is not accessible from this network segment. Now you have to decide how you will setup this DS.

Tibbo Connection Wizard	- V3.12	×	
	How would you like to finish the programming of inaccessible Device Server?		×
	Generate configuration script file and configure the Device Server later		would you like to finish the programming of inaccessible Device Server?
	C Configure the Device Server now via the serial port		erate configuration script file and configure the Device ver later
	Path to configuration script file: Browse		figure the Device Server now via the serial port
	DIUNE		unications Port (COM1) unications Port (COM2)
	< Back Next> Help Cancel		
		< B	lack Next> Help Cancel

#### There are two choices:

- **Generate configuration script** (left screenshot). The script file can later be fed into the *Connection Wizard*, possibly running on a *different* PC (see <u>finishing remote job</u>). Choose this option if you cannot physically bring the DS to this PC for programming. Input the path and filename for the script file (left screenshot) and press *Next*.
- **Configure the DS through the serial port** (right screenshot). Choose this option if you can temporary bring the DS to this PC for programming. Connect the serial port of the DS to the unused COM port of your PC (with the <u>WAS-1455</u> or similar cable), make sure the DS is powered up and press the <u>setup button</u>* (this will put the DS into the <u>serial programming mode</u>). Click *Next* to continue (the *Wizard* will read out current setting values of the DS and proceed to the next step).

#### Note:



Status LEDs of the DS are playing a *serial programming mode pattern* (shown on the left) when the serial port of the DS is in the <u>serial programming mode</u> (click <u>here</u> to see all available patterns).

* On EM100, EM120, EM200, EM202- pull the <u>MD line</u> low for at least 100ms.

## Finishing remote job

This job is selected by choosing "Finish remote job" from the <u>list of available jobs</u>. This feature allows you to finish the programming of the DS that was marked as inaccessible from the "programming" PC when running one of the three connection jobs.

Inaccessibility of the DS from the "programming" PC is not an uncommon situation in wide-area networks (WANs). Such WANs are often not symmetrical i.e. only one side of the data link can "see" the other side. For example, in the <u>VSP-to-DS</u> link

the DS may be able to "see" (and connect to) the PC (*VSP*) but the PC (*VSP*) won't be able to "see" the DS. The *Wizard* easily deals with this kind of networks by correctly identifying which side of the link will be responsible for establishing data connections with the other side.

The problem, however, is that if the DS is not visible from the PC, then the *Wizard* cannot configure it through the network as well! The way out is either to program the DS via its serial port immediately or generate configuration script file that can be used later (you have been offered this choice on the

programming inaccessible DS step* of the *Wizard*). "Later" programming of the DS is done by choosing Finish remote job on the <u>Wizard</u> job step of the *Wizard*.

## Programming method for the DS

How will you access this Device Server?	×
C Via the serial port	fow will you access this Device Server?
Mia the network     Destination IP-address:     192 . 168 . 100 . 91	the serial port
Access method: Dut-of-Band (UDP) Access port: 65535	runications Port (CDM1) runications Port (CDM2)
Select DS from the list	
<back next=""> Help Cancel</back>	<pre></pre>

On this screen you select how the Wizard will program the DS.

#### There are two options to choose from:

• **Through the serial port** (right screenshot). Choose this option if you can temporary bring the DS to this PC for programming. Connect the serial port of the DS to the unused COM port of your PC (with the <u>WAS-1455</u> or similar cable), make sure the DS is powered up and press the <u>setup button</u>* (this will put the DS into the <u>serial programming mode</u>). Click *Next* to continue (the *Wizard* will read out current setting values of the DS and proceed to the next step).



Status LEDs of the DS are playing a *serial programming mode pattern* (shown on the left) when the serial port of the DS is in the <u>serial programming mode</u> (click <u>here</u> to see all available patterns).

• **Through a temporary network connection** (left screenshot). Choose this option if this PC resides on the same network segment with the DS or if you can temporarily connect the DS to the same network segment with this PC. In any case the DS and the PC must be on the same network segment.

#### Programming the DS through a temporary network connection

Since the DS has to be local the access options are disabled because they are only necessary when you are dealing with the remote DS.

The only editable option is the IP-address of the DS. You can input this IP-address manually or select the DS from the list:

- Click *Select DS button* and choose the DS from the list. The *button* brings up the dialog, similar to the *main window* of the <u>DS Manager</u>. In fact, it is the *DS Manager*, with the following two differences:
  - There is an additional *Select button*. To select a particular DS single-click on the DS in the *device list* (in the <u>auto-discovery</u> access mode) and press *Select*. Alternatively, you can double-click on the DS in the *device list*.
  - The <u>address book</u> and <u>COM access mode</u> are not available. The DS #1 must be local and so you must be able to find it in the <u>auto-discovery</u> mode.
- Click Next.

When you click *Next* the *Wizard* attempts to contact the target DS. If everything is OK the *Wizard* reads out all current setting values of this DS.

* On EM100, EM120, EM200, EM202- pull the <u>MD line</u> low for at least 100ms.

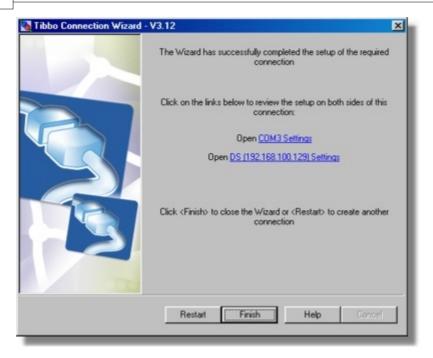
## Configuration script file

On this screen you choose the configuration script file that will be used to setup the DS.

Tibbo Connection Wizard	V3.12	×
	Select configuration script file	
	Path to configuration script file: D:\My Documents\temp\conf1.ds Browse	
	<back next=""> Help Cancel</back>	

Browse to a file of your choice and click Next.

# **Reviewing setup details**


On this step you can review the setup this *Wizard* is about to apply to both sides of the connection. There is nothing to select or decide on here- the step is provided for your information only. Screenshot below shows the configuration of the *VSP* and the target DS for the <u>VSP-to-DS</u> link.

Tibbo Connection Wizard	- V3.12		×
	Tibbo Connection Wizard is ready to set up the link. The programming will be applied:		lowing
	DEVICE SERVER Routing mode: Transport protocol: Local port On-the-Fly commands: Flow control: Baud rate: Partiy: Data bits: "All other Settings as per VIRTUAL SERIAL PORT Routing mode: Destination: Connect mode: Transport protocol:		4
000	Press	Finish to proceed	
	< Back Fin	ish Help Ca	ncel

Once you click *Next* the *Wizard* starts configuring the link.

# Final screen7

If you got to this screen then this means that the *Wizard* has successfully configured your connection. Clicking on the internet-style links in the middle of the screen opens configuration dialogs for the "participants" of this connection.



For example, if you've just finished the <u>VSP-to-DS</u> job then you will see two links as shown on the screenshot above. The first one opens the <u>VSP properties dialog</u>, the second one-<u>DS settings dialog</u>. This provides a comfortable way of reviewing the setup and making changes (if necessary) right from inside the *Wizard*.

Click Finish if you want to close the Wizard. Click Restart to run another Wizard job.

## Warnings and messages

This reference section contains additional information on the warning and error messages displayed by the *Connection Wizard*.

## Inband access for local DS

#### **Description**

Message text: It makes no sense to use <u>inband (TCP)</u> access method for local Device Servers. Do you still wish the *Connection Wizard* to use it?

#### <u>Details</u>

This message was displayed because the *Connection Wizard* has determined that the DS you've specified is local (i.e. located on the same network segment as this PC) yet you have opted to program this DS using <u>inband (TCP)</u> access method.

The primary method of programming Device Servers is by using <u>out-of-band (UDP)</u> access method. This method always works and should be used for all local Device Servers. Inband programming is meant as an alternative method for remote Device Servers that cannot be accessed using out-of-band method.

## MAC-->IP mapping advised

#### **Description**

**Message text:** It is recommended to use the MAC --> IP mapping option because this Device Server is running with DHCP enabled and its IP-address can change in the future. Do you still wish to reference this DS by its IP-address?

#### **Details**

MAC-->IP mapping option was created as a means to avoid communication problems with Device Servers that run with **DHCP (DH) setting** programmed to 1 (enabled). The IP-address of such Device Servers is configured by the DHCP server and there is no guarantee that this IP-address won't change in the future. When this happens the *VSP* won't be able to communicate with the DS since the target IP-address specified for this *VSP* will no longer belong to this DS.

The solution is to reference the DS by its MAC-address, which is done by enabling the MAC-->IP mapping option. More on the subject can be found here: additional info on accessing the DS.

If you choose to not enable the mapping the data connection will work, but only until the DHCP server assigns a different IP-address to the DS.

## DS #1 must be local

#### **Description**

Message text:

Device Server #1 must be local (located on the same network segment with this PC)

#### **Details**

This is a limitation imposed by the *Connection Wizard*. When you are creating a link between two Device Servers the *Wizard* requires that at least one of the Servers is located on the same network segment as the PC on which the *Wizard* is running. Another DS may be local or remote.

## Non-zero port number required

**Description** 

Message text: Listening port number cannot be zero

#### **Details**

When you choose a port number for the <u>listening port</u> on the *VSP* side you can input any number in the 1-65535 range. Port 0 is a special number that instructs the PC to choose an actual port automatically. Since the port number of the listening port must be fixed and known you are not allowed to input "0".

## Port is in use

#### **Description**

Message text: This port is in use. Choose another port number

#### **Details**

A port cannot be used by several applications simultaneously. This message means that the port is already opened by another application (possibly, another *VSP*!). Select a different port number and try again.

## VSP is opened by another application

#### Description

**Message text:** This *VSP* is currently opened by another application. Close this application first to allow the *Wizard* to change *VSP* properties

#### **Details**

When the *VSP* is opened by another application its properties are locked and cannot be changed.

## **Different IP-address required**

#### **Description**

Message text: You cannot select the same Device Server twice

#### **Details**

This message is displayed in the cause of the <u>DS-to-DS connection job</u> when you select the same DS on both <u>DS #1</u> and <u>DS #2</u> steps of the *Wizard*.

## Unable to find setting description file

#### **Description**

**Message text:** Unable to find serial settings definition file (wizserial.sdf)

#### **Details**

Wizserial.sdf contains the list of settings related to the serial port of the DS. During the installation this file is copied into the */SDF* folder inside the target installation folder of the *Device Server Toolkit (DST)*. This message indicates that there is no such file in the */SDF* folder. This problem can be corrected by reinstalling the software.

## Invalid IP-address

#### Description

#### Message text:

You cannot select this Device Server because its IP-address is  $\ensuremath{\mathsf{unreachable}}$ 

# **Details**

This message is displayed when the *Connection Wizard* has determined that local DS of your choice cannot be communicated with using normal IP-addressing.

As explained in <u>broadcast access</u>, a local Device Server can be accessed for programming even if its IP-address is not configured properly. Therefore, the *Connection Wizard* itself would be able to access and program any local Device Server, even if the IP-address of this DS is unreachable. Data communications with the DS, however, require the IP-address to be reachable. For example, the *VSP* won't be able to connect to the DS with a "wrong" IP-address. This is why the *Wizard* demands that you assign a proper IP-address to the DS before continuing with the connection job.

There are several reasons why the IP-address of the Device Server may (appear to) be unreachable. See <u>troubleshooting (auto-discovery mode)</u> for more information.

# The DS is not local

#### **Description**

Message text: This Device Server is not local. Is this correct?

## **Details**

This message means that the *Wizard* has verified if the target Device Server is located on the same network segment with this PC and has determined that the DS is not local, i.e. located on some other network segment and there is at least one router (firewall, bridge, etc.) between this PC and the DS.

Understanding whether the target DS is local or remote is important for several *Wizard* steps that will follow.

If you believe that the DS is actually local press *Retry* to make the *Wizard* re-check the location of the DS.

# Avoid data characters with ASCII code FF

# **Description**

Message text:

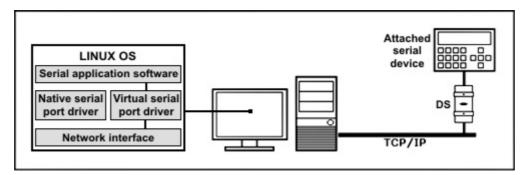
You must make sure that your application won't send any characters with ASCII code 255 (FF).

# **Details**

This message is displayed when you have specified <u>inband access method</u> for the <u>target DS</u>. <u>Inband access</u> method is usually utilized when <u>out-of-band access</u> is not possible (i.e. because of restrictions on the network). To allow future programming of the target DS the *Wizard* will preserve inband access in the DS and this means that the **Inband (IB) setting** of the DS will be kept at 1 (enabled).

When the **Inband (IB) setting** of the DS is at 1 (enabled) the DS can accept commands sent by the remote host across the data connection and ASCII character with code 255 (FF Hex) is used as an "escape" character that signifies the beginning of a command and two FF characters need to be sent to transmit one data FF character (see inband programming for details).

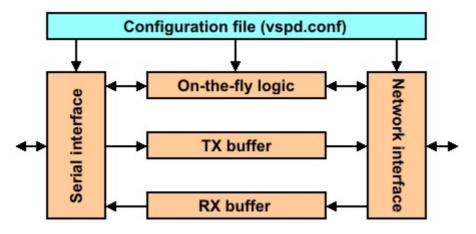
If your application sends any FF characters the DS will interpret this as a beginning of an inband command, which is obviously a problem as all subsequent data will not be routed to the serial port of the DS. There are three solutions to this problem:


- Find a way to program the DS using out-of-band access method. In this case the *Wizard* will disable inband commands on the DS side and all FF characters will be interpreted by the DS in a "normal" way.
- Find a way to avoid sending ASCII characters with code FF between your application and the DS (your serial device).
- Alter how your application handles all FF characters in a way compatible with the inband mode. This means that:
  - Whenever your application needs to send ASCII character FF it actually sends two consecutive FF characters;
  - Whenever your application receives two FF characters it interprets this as a single data character with code FF.

# Virtual Serial Port Driver for LINUX (VSPDL)



**Virtual Serial Port Driver for LINUX** (*VSPDL*) powers **Virtual Serial Ports** (*VSPs*) that emulate "real" serial ports under *LINUX OS*.


The *VSPDL* is an "engine" that powers **Virtual Serial Ports** (*VSPs*). To any LINUX application the *VSP* "looks and feels" just like a "normal" serial port. In reality, the *VSP* transparently reroutes all data sent by the application to the Tibbo Device Server ("DS") and the serial device behind it ("attached serial device"). Likewise, all the data sent by the serial device is received by the DS and routed to the *VSP*, which, in turn, passes this data to the application. Both the software application on the PC and the serial device communicate with each other just as if they were interconnected by a "normal" serial cable, without knowing that there is a network in between. This allows you to network-enable your existing serial system without changing the serial device itself or its PC software.



*VSPDL* operation is defined by configuration file named <u>vspd.conf</u>. This manual explains the features of the VSPDL through the structure and parameters of the <u>vspd.conf</u>.

# How VSP works

When designing the *VSPDL* we have attempted to emulate the work of a standard serial port as closely as possible. All system calls supported by the serial port driver were carefully ported into the *VSPDL* and the behavior of the *VSPs* closely mimics that of "real" serial ports.



## Shown above is a VSP block diagram:

- **Serial interface** presents an application interface, compatible with the standard serial port driver. LINUX applications are not able to tell the difference between a *VSP* and a "real" COM port.
- **TX and RX buffers** are used to pass the data between the application and the DS.
- **Network interface** communicates (through the TCP/IP network) with the target DS. The *VSP* transparently establishes and accepts data connections with/from the DS as needed.
- **On-the-fly logic** (when enabled) is responsible for adjusting communications parameters of the serial port on the DS to the requirements of the application. For example, if the application wants the serial port to run at 19200 bps a special <u>on-the-fly command</u> will be sent to the DS telling it to change the serial port baudrate to 19200. Thus, the DS serial port functions just like the serial port and the PC!
- **Configuration file** (<u>vspd.conf</u>) define different aspects of *VSPDL* operation.

# **VSPDL** device files

# Two types of device files are created by the VSPDL:

- /dev/vspsn are virtual serial port device files (n is the port number, so actual names look like this: /vsps0, /vsps1, etc.). These are the files that your "serial" application should open for input/output
- /dev/vspdn or /dev/vsp/vspdn (depending on your LINUX kernel version) are system files created by the VSPDL for its internal needs (n is the port number, so actual names look like this: /vsps0, /vsps1, etc.). Do not attempt to access these files.

# Installation

291

The VSPLD is supplies in four different versions:

- **Statically** linked executable, gzipped **TAR** archive.
- Dynamically linked executable, gzipped TAR archive.
- Statically linked executable, RPM package.
- **Dynamically** linked executable, **RPM** package.

# To install statically linked version you will need the following:

- LINUX system (kernel 2.2.x-2.5.x).
- GNU C compiler.
- Linux kernel headers/sources of the Linux kernel you are running now.
- binutils-2.7.0 or above.
- make-3.74 or above.
- bash

# To install dynamically linked version you will need the following:

- LINUX system (kernel 2.2.x-2.5.x).
- GNU C compiler.
- Linux kernel headers/sources of the Linux kernel you are running now.
- make-3.74 or above.
- binutils-2.7.0 or above.
- bash
- libc.so.6
- libexpat.so.0
- libgcc_s.so.1
- libm.so.6
- Ibstdc++.so.5

# Further, you will need either

- gunzip-1.2.4 or above to process TAR archive, or
- **RPM tool** of your choice to process RPM package.

The Virtual Serial Port Driver for LINUX (VSPDL) distribution includes the following:

- **VSPModule** Linux kernel module that creates Virtual Serial Ports (VSPs) on your system (in *lib*/* of your distribution).
- **VSPDaemon** interacts with the VSPModule, facilitates data transfers between the VSPs and the network (in *sbin*/* of your distribution).
- **Documentation** current documentation set in HTML format (in *man/** of your distribution).
- **Sample configuration files** (in *etc*/* of your distribution).

• VSPModule/VSPDaemon startup scripts ( in *bin/vspm*, *bin/vspd* of your distribution).

# To install from TAR archive:

- Login from console as a superuser (root).
- Copy the TAR archive into a temporary directory (i.e. */root/vsptmp*):
  - #mkdir /root/vsptmp
  - #cp ./vspd-1.00.tar.gz /root/vsptmp
  - #cd /root/vsptmp
- Unpack the TAR archive and go to the destination directory:
  - #tar xvf ./vspd-1.00.tar.gz -z
  - #cd ./vspd-1.00-dist
- Install the VSPDL into */usr/local/vspd* : #./install.sh /usr/local/vspd (the shell script will install all files automatically):
  - The script will check system dependencies for VSPModule compilation;
  - The script will then compile the VSPModule;
  - Finally, the script will install all files into their target location (/usr/local/vspd) and necessary startup shell scripts (vspd and vspm)- into /etc/rc.d/init.d/.

# To install from RPM archive:

- Login from console as a superuser (root).
- Go to the directory containing RPM archive and execute the following command: #rpm --install ./vspd-X.YY-linux.i586.rpm (you can also use any other tool of your choice to install RMP).
  - RPM subsystem will check package dependencies and let you know if something is missing;
  - If all dependencies check out successfully an installation directory will be created (normally, */usr/local/vspd-X.YY-dist*);
  - Next, the VSPModule will be compiled and installed into the package installation directory (normally, to /usr/local/vspd);
  - Finally, the RPM subsystem will check the distribution installation directory and package installation directory to see if both were successfully created.

# If the VSPDL installs successfully, you will have the following:

- In /*etc/rc.d/init.d/vspd* and /*etc/rc.d/init.d/vspm* standard UNIX startup scripts for VSPDaemon and VSPModule.
- In /usr/local/vspd/bin/* VSPDL services (startup and VSPTty).
- In /usr/local/vspd/etc/* VSPDL configuration files.
- In /usr/local/vspd/lib/vspm.ko VSPModule.
- In /usr/local/vspd/sbin/vspd VSPDaemon.
- In /usr/local/vspd/man/* VSPD documentation.

# **Controlling VSPDL operation**

#### Use the following commands to start the VSPDL:

- #/etc/rc.d/init.d/vspm start (must report [OK] if started successfully).
- #/etc/rc.d/init.d/vspd start.

As explained in <u>how VSP works</u>, the VSPLD configuration is stored in the <u>configuration file vspd.conf</u>. After the file is edited and changes saved you must "update" driver configuration by using the following command:

/etc/rc.d/init.d/vspd reloadconf

This will make the VSPDL re-read the file and start using new configuration. Configuration can be updated even when the VSPDL is working i.e. some VSPs are opened and in use.

# VSPDL configuration file (vspd.conf)

Functioning parameters of the VSPDL, and also configurations of individual VSPs are all defined by a single configuration file *vspd.conf*. The file usually resides at */usr/local/vsp/etc/*. You must be logged in as a superuser to be able to edit this file. Editing can be done with any text editor of your choice.

After the file is edited and changes saved you must "update" driver configuration by using the following command:

/etc/rc.d/init.d/vspd reloadconf

This will make the VSPDL re-read the file and start using new configuration. Configuration can be updated even when the VSPDL is working i.e. some VSPs are opened and in use.

*Vspd.conf* has the following structure* (see a <u>sample file</u> in the next topic for actual configuration example):

```
<!-- **** VIRTUAL SERIAL PORT DRIVER FOR LINUX (VSPDL) CONFIGURATION FILE **** -
->
<vspdconfig>
 <!-- Root directory for the daemon -->
 <root dir="directory"/>
 <!-- Path and prefix for device files -->
 <devprefix value="value"/>
 <!-- Host to bind by default -->
 <<u>bind host</u>="IP_address"/>
 <!-- Timeout for basic I/O operations -->
 <timeout [exec="exec(100)"] [priority="priority(10)"]/>
 <!-- VSPdaemon event logging configuration -->
 [<log type="syslog pipe file" level="EMR ALR CRT ERR WRN NTC INF DBG"
path= "path" / >]
 . . .
 [<log type="syslog pipe file" level="EMR | ALR | CRT | ERR | WRN | NTC | INF | DBG"
path= "path" / >]
```

```
<!-- ====== CONFIGURATION OF INDIVIDUAL VIRTUAL SERIAL PORTS (VSPs) ======= -</pre>
->
 <!-- VSP0 CONFIGURATION ----- -->
 <!-- VSP number -->
 <<u>vsp</u> <u>num</u>="0">
 <!-- HOST AND PORT TO BIND -->
 <bind host="[IP_address]" port="port"/>
 <!-- Connection parameters -->
 <<u>connection</u> [<u>rmode</u>="client|server|server/client"] [<u>proto</u>="udp|tcp"]
[conmode="ondata immediately"]
 [timeout="timeout(5)"] [onthefly="outofband inband disabled"]
[<u>clogin</u>="pwd"] [<u>dlogin</u>="pwd"] />
 <!-- Destination device parameters -->
 <destination ip="IP_address" | mac="MAC_address" [port="port(1001)"]</pre>
[cport="cport(65535)"] />
 <!-- Outbound packet generation options -->
 <packets [maxlen="len(255)"] [maxdelay="delay(0)"] [starton="any|char"]</pre>
[startchar="hex"] [stopchar="hex"] />
 <!-- Event logging configuration for this VSP -->
 [<log type="syslog pipe file" level="EMR ALR CRT ERR WRN NTC INF DBG"
path="path"/>]
 . . .
 [<log type="syslog pipe file" level="EMR ALR CRT ERR WRN NTC INF DBG"
path= "path" / >]
 <!-- Data dump section -->
 [<dump port="no yes" path="path"/>]
 </vsp>
 <!-- VSP1 CONFIGURATION ----- -->
 <vsp num="1">
 . . .
 . . .
 </vsp>
 </vspdconfig>
<!-- **** END OF VIRTUAL SERIAL PORT DRIVER FOR LINUX (VSPDL) CONFIGURATION FILE
**** -->
```

* Some comments found in the actual vspd.conf that comes with the driver were omitted. Default values for optional parameters are shown in **purple** 

# Sample configuration file

Here is a sample configuration file (some optional parameters are at default values and were included for clarity):

```
<!-- **** VIRTUAL SERIAL PORT DRIVER FOR LINUX (VSPDL) CONFIGURATION FILE **** -
->
<vspdconfig>
 <!-- Root directory for the daemon -->
 <root dir="/usr/local/vsp"/>
 <!-- Path and prefix for device files -->
 <devprefix value="/dev/vsp/vspd"/>
 <!-- Host to bind by default -->

<bind host="192.168.100.40"/>
 <!-- Timeout for basic I/O operations -->
 <timeout exec="100" priority="10"/>
 <!-- VSPdaemon event logging configuration -->
 <log type="file" level="EMR" path="var/vspd.log"/><log type="file" level="ALR" path="var/vspd.log"/><log type="file" level="CRT" path="var/vspd.log"/>
 log type="file" level="ERR" path="var/vspd.log"/>
 <log type="file" level="WRN" path="var/vspd.log"/>
 <log type="file" level="NTC" path="var/vspd.log"/>
 <log type="file" level="INF" path="var/vspd.log"/>
 <!-- ====== CONFIGURATION OF INDIVIDUAL VIRTUAL SERIAL PORTS (VSPs) ======= -</pre>
- >
 <!-- VSP number -->
 <vsp num="0">
 <!-- HOST AND PORT TO BIND -->
 <bind host="192.168.100.40" port="3500"/>
 <!-- Connection parameters -->
 <connection rmode="server/client" proto="tcp" conmode="ondata"
timeout="2" onthefly="outofband" clogin="pwd" dlogin="pwd"/>
 <!-- Destination device parameters -->
 <destination ip="192.168.100.90" port="1001" cport="32767"/>
 <!-- Outbound packet generation options -->
 <packets maxlen="255" maxdelay="0" starton="any"/>
 <!-- Event logging configuration for this VSP -->
 <log type="file" level="EMR" path="var/vspd.log"/>
 <log type="file" level="ALR" path="var/vspd.log"/>
<log type="file" level="CRT" path="var/vspd.log"/>
 <log type="file" level="ERR" path="var/vspd.log"/>
 <log type="file" level="WRN" path="var/vspd.log"/>
 <log type="file" level="NTC" path="var/vspd.log"/>
 <log type="file" level="INF" path="var/vspd.log"/>
 </vsp>
 </vspdconfig>
<!-- **** END OF VIRTUAL SERIAL PORT DRIVER FOR LINUX (VSPDL) CONFIGURATION FILE
**** -->
```

```
295
```

# **General VSPDL configuration**

General configuration options define the configuration of the VSPDL as a whole. The format for the VSPDL configuration header is as follows (**purple** marks default values that will be used if corresponding parameter is omitted):

```
<!-- **** VIRTUAL SERIAL PORT DRIVER FOR LINUX (VSPDL) CONFIGURATION FILE **** -</pre>
<vspdconfig>
 <!-- Root directory for the daemon -->
 <<u>root dir</u>="directory"/>
 <!-- Path and prefix for device files -->
 <devprefix value="value"/>
 <!-- Host to bind by default -->

<bind host="IP_address"/>
 <!-- Timeout for basic I/O operations -->
 <timeout [exec="exec(100)"] [priority="priority(10)"]/>
 <!-- VSPdaemon event logging configuration -->
 [<log type="syslog|pipe|file" level="EMR|ALR|CRT|ERR|WRN|NTC|INF|DBG"
path= "path" / >]
 . . .
 [<log type="syslog|pipe|file" level="EMR|ALR|CRT|ERR|WRN|NTC|INF|DBG"
path="path"/>]
 <!-- ====== CONFIGURATION OF INDIVIDUAL VIRTUAL SERIAL PORTS (VSPs) ======= -</pre>
_ ~
</vspdconfig>
<!-- **** END OF VIRTUAL SERIAL PORT DRIVER FOR LINUX (VSPDL) CONFIGURATION FILE
**** __>
```

# Root directory for the daemon (<root> section)

<**Root>** section defines root directory for the VSPdaemon. We do not recommend you changing the default value of dir parameter unless necessary (and you know what you are doing). The section has the following syntax:

```
<root dir="/usr/local/vsp/"/>
```

# Path and prefix for device files (<devprefix> section)

**<Devprefix>** section defines the prefix for the device name used by the daemon. For example, if prefix is "/dev/vsp/vspd" then the daemon will access device 0 as /dev/vsp/vspF0. We do not recommend you changing the value parameter unless necessary (and you know what you are doing). The section has the following syntax:

```
<devprefix value="/dev/vsp/vspd"/>
```

# Host to bind by default (<bind> section)

**<Bind>** section selects the IP-address to which the VSPDL will "bind". LINUX servers often have several network interfaces (with each interface having its own IP-address) and it is necessary to specify which interface the VSPs will work on. All VSPs will bind to the same IP-address, except for those whose configuration specifies a <u>different bind host</u>.

The section has the following syntax:

<bind host="IP_address"/>

# Timeout for basic I/O operations (<timeout> section)

We do not recommend you changing this section unless absolutely necessary (and you know what you are doing). The section has the following syntax (**purple** marks default values that will be used if corresponding parameter is omitted):

<timeout exec="exec(100)" priority="priority(10)"/>

**Exec** parameter specifies a sleep timeout in milliseconds, which is performed after all VSPs has been polled. This value can be decreased if you have many VSPs and experience problems with VSPDL performance. Setting **exec** to 0 causes your PC to poll the ports at maximum possible speed. This leads to high CPU utilization by the VSPLD but may be necessary if you want to achive best possible performance in a system with a large number of virtual ports.

Priority parameter specifies priority level for the VSPdaemon process.

# VSPdaemon event logging configuration (<log> section)

**<Log>** section describes the logging options for events generated by the VSPdaemon. Notice, that <log> section can be included into the VSP configuration itself (i.e. inside <VSP> .... </VSP>) thus defining individual logging options for this particular VSP.

The section has the following syntax:

```
[<log [type="syslog|pipe|file"] level="EMR|ALR|ERR|WRN|NTC|INF|DBG"
[path="path"]/>]
```

**Type** parameter defines the output destination for the event. If **type** is set to "syslog", all events are logged to a syslog facility "USER". If omitted, this parameter defaults to "syslog".

**Level** parameter defines the type of event for which this entry is created. Standard level names are used.

**Path** parameter is only needed when type="pipe" or "file" and defines the file to which events will be saved or a program that will accept events into its STDIN.

Because each entry in the format shown above specifies logging only for one type of events (**level**) the configuration file can have several entries, for example:

```
<log type="file" level="EMR" path="var/dev.0.log"/><log type="file" level="ALR" path="var/dev.0.log"/><log type="file" level="CRT" path="var/dev.0.log"/><log type="file" level="ERR" path="var/dev.0.log"/><log type="file" level="WRN" path="var/dev.0.log"/></log type="file" level="Var/dev.0.log"/></log type="file" level="file" level="file" level="file" level="file" level="file" level="file" level="file" level="file" level="file" level
```

```
<log type="file" level="NTC" path="var/dev.0.log"/><log type="file" level="INF" path="var/dev.0.log"/>
```

In general, we recommend you to keep the list of logged events like the one shown above. Logging "DBG" events is not necessary.

# VSP configuration (<vsp> section)

VSP configuration options define individual functioning parameters for each VSP. Each VSP has to be described in the following format (**purple** marks default values that will be used if corresponding parameter is omitted):

```
<!-- VSP0 CONFIGURATION ----- -->
 <!-- VSP number -->
 <vsp <u>num</u>="0">
 <!-- HOST AND PORT TO BIND -->
 <bind host="ip_address" port="port"/>
 <!-- Connection parameters -->
 <<u>connection</u> [<u>rmode</u>="<u>client</u>| server| server/client"] [<u>proto</u>="<u>udp</u> | tcp"]
[conmode="ondata immediately"]
 [timeout="timeout(5)"] [onthefly="outofband linband disabled"]
[clogin="pwd"] [dlogin="pwd"] />
 <!-- Destination device parameters -->
 <destination ip="IP_address" | mac="MAC_address" [port="port(1001)"]</pre>
[<u>cport</u>="cport(65535)"] />
 <!-- Outbound packet generation options -->
 <packets [maxlen="len(255)"] [maxdelay="delay(0)"] [starton="any char"]</pre>
[startchar="hex"] [stopchar="hex"] />
 <!-- Event logging configuration for this VSP -->
 [<log type="syslog|pipe|file" level="EMR|ALR|CRT|ERR|WRN|NTC|INF|DBG"
path="path"/>]
 . . .
 [<log type="syslog pipe file" level="EMR ALR CRT ERR WRN NTC INF DBG"
path="path"/>]
 <!-- Data dump section -->
 [<dump port="no yes" path="path"/>]
 </vsp>
```

Click on the links above to jump to parameter group and individual parameter description topics.

# VSP number (<vsp> section)

Syntax:	<vsp ]="" num="num"></vsp> , where num is the port number in the 0-127 range
Default value (if omitted):	this parameter is mandatory and must be present

<b>Relevance conditions:</b>	
See also:	VSP name selection

**Num** (VSP number) parameter defines the number for the VSP. The number can be in the 0-127 range.

This parameter is similar to the port name of the VSP for Windows.

# Host and port to bind for the VSP (<bind> section)

**<Bind>** section defines the IP-address and the port number of the VSP on its side. The section has the following syntax (**purple** marks default values that will be used if corresponding parameter is omitted):

<bind <u>host</u>="[IP_address]" <u>port</u>="port"/>

Click on the links above to jump to individual parameter description topics.

# Bind host (<host> parameter)

Syntax:	< <u>bind</u> host="[IP_address]"/>
Default value (if omitted):	Parameter is mandatory; if the value is NULL (i.e. host="") then the value of "general" <u>bind</u> parameter will be used
Relevance conditions:	
See also:	

**Host** parameter selects the IP-address to which this VSP will "bind". LINUX servers often have several network interfaces (with each interface having its own IP-address) and it may be necessary to specify which interface this particular VSP will work on.

This parameter must not be omitted. Defining Host="" makes the VSP bind to the "general"  $\underline{bind}$  IP-address.

# Bind port (<port> parameter)

Syntax:	< <u>bind</u> port="[port]"/>
Default value (if omitted):	Parameter is mandatory
Relevance conditions:	<pre>rmode="server" or "server/client"</pre>
See also:	Port Number (PN) setting (DS), listening port (VSP for Windows)

**Port** parameter specifies the port number on the PC that will be associated with this VSP. This port serves as a "listening port" for incoming data connections, when such connections are allowed by the <u>routing mode</u> of the VSP. Additionally, in case of UDP <u>transport protocol</u> and server/client <u>routing mode</u>, the port is also used to send outgoing UDP datagrams. For more details see <u>additional info on UDP and TCP connections</u>.

This parameter must be specified and cannot be omitted.

Port parameter works like the **<u>Port Number (PN) setting</u>** of the DS and <u>listening port</u> option of the *VSP* for *Windows*.

# Connection parameters (<connection> section)

<Connection> section specifies several different parameters that define how VSP will communicate and interact with the DS. The section has the following syntax (purple marks default values that will be used if corresponding parameter is omitted):

```
<connection [rmode="client|server|server/client"] [proto="udp|tcp"]
[conmode="ondata|immediately"] [timeout="tout(5)"]
[onthefly="outofband|inband|disabled"] [clogin="pwd"] [dlogin="pwd"]/>
```

Click on the links above to jump to individual parameter description topics.

# Routing mode (<connection rmode>)

Syntax:	< <u>connection</u> [ <b>rmode</b> ="server client server/client"]/>
Default value (if omitted):	"server"
Relevance conditions:	
See also:	Routing Mode (RM) setting (DS), Routing Mode option (VSP for Windows)

**Rmode** (routing mode) parameter defines whether the *VSP* will accept incoming connections (passive opens) and/or establish outgoing connections (perform active opens).

# The following choices are available:

"server" (default)	Only incoming connections are accepted, the VSP never attempts to establish an outgoing connection to the DS. There is no restriction on which DS can connect to the VSP- connection from any IP-address will be accepted as long as the DS is connecting to the correct <u>bind port</u> using correct <u>transport protocol</u> .
"client"	Only outgoing connections are allowed, the VSP rejects all incoming connections.
"server/client"	Both incoming and outgoing connections are allowed. Outgoing connections are established with the destination, specified in the <u>destination section</u> of the configuration file. Exactly when the <i>VSP</i> attempts to establish an outgoing connection is defined

by the selected <u>connection mode</u>. Incoming connections are accepted from any IP-address, just like with the server routing mode.

Rmode parameter works like the **<u>Routing Mode (RM) setting</u>** on the DS and the <u>Routing Mode option</u> of the *VSP* for *Windows*.

# Transport protocol (<connection proto>)

Syntax:	< <u>connection</u> [proto="udp tcp"]/>
Default value (if omitted):	"udp"
Relevance conditions:	
See also:	<u><b>Transport Protocol (TP) setting</b></u> (DS), <u>transport protocol</u> ( <i>VSP</i> for <i>Windows</i> )

**Proto** (transport protocol) selects which communications protocol- TCP/IP or UDP/IP will be used by the *VSP* for data communications with the DS. Omitting the parameter selects the UDP/IP protocol.

For the data connection with the DS to work the same transport protocol must be selected on the DS side- see the **<u>Transport Protocol (TP) setting</u>**. This parameter has the same function as the <u>transport protocol</u> option of the *VSP* for *Windows*.

Unless you have a specific reason why the UDP should be used (very rare!) we recommend you to stick to the TCP/IP. The TCP/IP is a "reliable delivery" protocol that makes sure that no data is lost "in transit" between the *VSP* and the DS. The UDP, on the contrary, does not guarantee data delivery.

Some considerations and additional info on the TCP and UDP implementation in the *VSP* can be found in the <u>next topic</u>.

#### **UDP data connections**

The notion of data connection is native to TCP/IP since this is a connection-based protocol. UDP/IP, however, is a connection-less protocol in which all packets (UDP datagrams) are independent from each other. How, then, the term "data connection" applies to the UDP transport protocol?

With UDP transport protocol true data connections (in the "TCP sense" of this term) are not possible (hence, parenthesis around the word "connection"). The *VSP*, however, attempts to mimic the behavior of TCP data connection whenever possible. Follows is the detailed description of UDP "connections" and their similarities and differences with TCP connections.

**Incoming "connections"*.** There is no connection establishment phase in UDP so an incoming UDP "connection" is considered to be "established" when the first UDP packet is received by the *VSP* (on the <u>bind port</u>). Similarity with TCP is in that after having received the packet from the DS the *VSP* knows who to send its own UDP packets to.

**Outgoing "connections"**.** The *VSP* establishes outgoing UDP connection by sending a UDP datagram to the <u>targeted destination</u>. If there is a data that needs to be transmitted the *VSP* sends the first UDP datagram with (a part of) this data. If there is no immediate data that needs to be transmitted to the DS the *VSP* sends the first UDP datagram of zero length (this happens when the <u>connection mode</u> is set to "immediately"). The purpose of this is to let the other side know the IP-

address of the VSP (PC it is running on), as well as the data port currently used by the VSP.

**Data transmission and destination switchover.** Once the "connection" is established the *VSP* and the DS exchange the data using UDP datagrams. The difference with TCP is that if another DS sends a datagram to the *VSP*, then the *VSP* will interpret this as a new incoming connection*, forget about the first DS and start sending its own UDP datagrams to the second one. In other words, the *VSP* will always communicate with the "most recent sender". Such behavior is not possible in TCP, in which a third party cannot interfere with an existing connection.

**"Connection" termination.** There is no connection termination phase in UDP so *VSP* "terminates" its UDP connections by forgetting about them and the only event that can trigger UDP "connection" termination (except for the closing of the *VSP*) is <u>connection timeout</u>.

Local port used by the VSP depends on the selected routing mode:

- **In the server routing mode** the *VSP* sends the UDP datagrams from an "automatic" port selected by the OS;
- In the server/client and client routing modes the VSP sends and receives UDP datagrams through the port, defined by the <u>bind port parameter</u>.

## **TCP data connections**

**Only one connection at a time.** TCP protocol stack on the PC is capable of supporting thousands of concurrent TCP connections but the *VSPDL* strictly enforces that only a single TCP connection exists for each *VSP* at any time. This is because the serial port is not a shared media and allowing, say, two Device Servers to connect to the same *VSP* would have created a data chaos***. Allowing only a single connection at a time follows a "serial port culture" of "one serial port- one application"! If the *VSP* is already engaged in a data connection with the DS and another DS attempts to establish a connection to this *VSP* then this DS will be rejected.

**Separate ports for outgoing and incoming connections.** The *VSP* establishes its outgoing connections** from an "automatic" port selected by the OS. Each time such outgoing connection is established the source port number on the *VSP* side will be different. The *VSP* accepts incoming connections* on a fixed listening port, whose number is defined by the <u>bind port parameter</u>. When the incoming connections are not allowed the bind port is closed.

* Assuming that incoming connections are allowed (i.e. the <u>routing mode</u> is either "server", or "server/client").

** Assuming that outgoing connections are allowed (i.e. the <u>routing mode</u> is either "client", or "server/client").

*** What if both Device Servers started sending the data to the VSP at the same time? Then the PC application using the VSP would have received a mix of data consisting of an input from both Device Servers! And if two Device Servers were connected to the same VSP and the PC application needed to send out the data then which DS of the two the VSP would have to send this data to?

#### Connection mode (<connection conmode>)

#### Syntax:

<<u>connection</u> ... [conmode="ondata|immediately"]/>

Default value (if omitted): "ondata"

<b>Relevance conditions:</b>	<pre>rmode = "client" or "server/client"</pre>
See also:	Connection Mode (CM) setting (DS),
	<u>connection mode</u> (VSP for Windows)

**Conmode** (connection mode) parameter defines when the *VSP* attempts to establish an outgoing connection to the destination, specified in the <u>destination section</u> of the configuration file.

#### *Connection mode drop-down box* provides two choices:

"ondata" (default)	The VSP attempts to establish an outgoing connection when the first "serial" data (since the VSP was opened or previous connection was closed/aborted) is sent by the PC application into the VSP.
"immediately"	The VSP attempts to establish an outgoing connection right after it is opened by the application. The VSP also tries to make this connection "persistent". If the connection is aborted by the DS, the VSP will (attempt to) reestablish it immediately. <u>Connection timeout</u> still works in this mode: when the current connection times out the VSP aborts it and immediately establishes a new connection. Such behavior "auto-repairs" hanged connections.

Connection mode option is irrelevant when the <u>routing mode</u> is "server", since in this mode outgoing connections are not allowed in principle.

Connection mode option works like the **<u>Connection Mode (CM) setting</u>** of the DS (modes 0 and 1 only) and <u>connection mode</u> option of the *VSP* for *Windows*.

# Connection timeout (<connection timeout>)

Syntax:	< <u>connection</u> [timeout="tout"]/>, where tout- connection timeout in minutes ("0" means "never timeout"); maximum value is 65535
Default value (if omitted):	5 minutes
Relevance conditions:	
See also:	<u>Connection Timeout (CT) setting</u> (DS), <u>connection timeout</u> (VSP for Windows)

**Timeout** (connection timeout) parameter sets the timeout (in minutes) for the data connections between the *VSP* and the DS. If no data is transmitted across the data connection (TCP or UDP) for a specified number of minutes the *VSP* aborts the connection.

Setting connection timeout parameter to 0 disables the feature and connection never times out. If omitted, this parameter defaults to 5 minutes.

Notice, that this feature will work even when the <u>connection mode</u> is set to "immediately". When the timeout comes the *VSP* closes the connection first and immediately reopens it (timeout counter is reloaded). This provides additional reliability since hanged connections are automatically "repaired".

Connection timeout parameter works like the <u>**Connection Timeout (CT) setting**</u> of the DS and the <u>connection timeout</u> option of the *VSP* for *Windows*.

# On-the-fly commands (<connection onthefly>)

Syntax:	< <u>connection</u> [ <b>onthefly</b> ="outofband inband disabled"]/>
Default value (if omitted):	"outofband"
Relevance conditions:	
See also:	<u>Connection Timeout (CT) setting</u> (DS), <u>connection timeout</u> (VSP for Windows)

<u>On-the-fly</u> commands are used to change the serial port configuration of the DS as needed (i.e. "on the fly"). Serial port configuration made through the on-the-fly commands overrides the permanent one, defined by the <u>serial port settings</u> of the DS. The difference between the changes made using on-the-fly commands and changes made through altering DS settings is that, unlike serial settings, on-the-fly commands have immediate effect and do not require the DS to be rebooted in order for the new values to be recognized.

With on-the-fly commands enabled, the serial port of the DS is always setup as required by the PC application that communicates with this DS through the *VSP*. When the PC application opens the *VSP* (or some communications parameters are changed) the application informs the *VSP* about required changes and the *VSP* relates this information to the DS by sending on-the-fly commands.

Additionally, on-the-fly commands are used by the VSP to control the RTS and DTR outputs of the DS serial port. The status of the CTS and DSR input of the DS serial port can be passed to the VSP too- this is done using so-called "notification messages".

## On-the-fly commands drop-down box provides three choices:

"outofband"	On-the-fly commands are enabled and sent in the form of <u>out-of-band (UDP)</u> commands. <u>On-the-</u> <u>fly commands (RC) setting</u> of the DS must be programmed to 1 (enabled) for the out-of-band on-the-fly commands to be accepted.
"inband"	On-the-fly commands are enabled and sent in the form of <u>inband (TCP)</u> commands. <u>On-the-</u> fly commands (RC) setting of the DS must be programmed to 1 (enabled) for the on-the-fly commands to be accepted. Additionally, there are some other programming steps that must be performed before the DS will recognize inband commands- see <u>preparing the DS for inband access</u> .
"disabled"	On-the-fly commands are not sent at all, so the serial port of the DS will use "permanent" serial port configuration defined by the <u>serial port settings</u> . In this mode it doesn't matter what serial port parameters are set in the PC software application- the DS will not be aware of them!

In general, we recommend you to keep on-the-fly commands enabled (unless there are some special reasons preventing you from doing so). Enabling on-the-fly commands keeps the serial port setup of the DS "in sync" with the requirements of

the software application using the VSP.

# As for choosing between out-of-band and inband modes, follow these recommendations:

Out-of-band commands work most of the time, especially when the PC (running *VSP*) and the DS are located on the same network segment*. Out-of-band commands may not work very well or not work at all for the remote Device Servers located behind the routers, firewalls, etc**. This is because:

- The routers are known to "drop" UDP datagrams (on which out-of-band on-the-fly commands are based) under heavy network traffic.
- UDP traffic is banned by the firewalls of many networks (hence, out-of-band onthe-fly commands cannot be used at all). If you want out-of-band on-the-fly commands to work then your network must allow UDP traffic to port 65535 or 32767!

If you encounter one of the above situations then you should use inband on-the-fly commands or not use on-the-fly commands at all!

* The definition of the network segment implies that there are only network hubs (and no routers, bridges, firewalls, etc.) between the PC and all other devices on the segment.

** Here we touch on a very complicated subject. Modern routers offer a bewildering array of setup options. We will attempt to cover this in details in our upcoming white papers.

# Password for on-the-fly commands (<connection clogin>)

Syntax:	< <u>connection</u> [clogin="pwd"]/>
If omitted:	Password will not be added to on-the-fly commands
Relevance conditions:	<pre>onthefly= "outofband" or "inband"</pre>
See also:	Out-of-band (UDP) programming, Login (L) command, On-the- fly Password (OP) setting, Password (PW) setting

**Clogin** (command login) parameter specifies the password that should be added to the on-the-fly commands. On-the-fly commands can be sent without prior login using **Login (L) command**. Instead, the password can be added to each command individually (see <u>out-of-band (UDP) programming</u>). **On-the-**

**fly Password (OP) setting** on the DS must be programmed to 1 (enabled) to make the DS check the password. Password specified by the clogin parameter must match the one defined through the **Password (PW) setting** of the DS.

When clogin parameter is omitted all on-the-fly commands are sent without password. This parameter is only relevant when <u>on-the-fly commands</u> are not disabled.

# Data login (<connection dlogin>)

Syntax:	< <u>connection</u> [dlogin="pwd"]/>
If omitted:	Data login procedure will not be performed
Relevance conditions:	<u>proto</u> = "tcp"

See also:

<u>Command-phase (TCP) programming,</u> <u>Data Login (DL) setting</u>, <u>Password (PW) setting</u>

**Dlogin** (data login) parameter specifies whether a "data login" procedure will be performed when a TCP connection is established between the VSP and the DS. When the data login is required the VSP cannot start exchanging the data with the DS immediately, but needs to login with a valid password first. This provides a password protection for the data connection with the DS. on the DS side, data logins are enabled through the **Data Login (DL) setting** (additional info on data logins can be found in <u>command-phase (TCP) programming</u>).

Password specified by the clogin parameter must match the one defined through the **Password (PW) setting** of the DS.

Note, that omitting dlogin parameter is not the same as and specifying dlogin=""! In the first case the VSP will expect to be able to start the data exchange with the DS as soon as the connection is established. In the second case the VSP will still perform a data login procedure with NULL password.

Dlogin parameter is irrelevant when the <u>transport protocol</u> is "udp" because data logins are only supported for TCP connections.

# Destination device parameters (<destination> section)

**<Destination>** section contains parameters that define the target DS to which the VSP will be establishing connections and also port numbers on the destination DS. The section has the following syntax (**purple** marks default values that will be used if corresponding parameter is omitted):

```
<connection <u>ip</u>="IP_address" |<u>mac</u>="MAC_address" [<u>port</u>="port(1001)"]
[<u>cport</u>="cport(65535)"]/>
```

Click on the links above to jump to individual parameter description topics.

# **Destination IP-address (<ip> parameter)**

Syntax:	< <u>destination</u> ip="IP-address"/>
If omitted:	mac parameter will be used (at least one- ip or mac must be specified)
Relevance conditions:	<pre>rmode = "client" or "server/client"</pre>
See also:	

 ${\bf Ip}$  (IP-address) parameter specifies the IP-address of the target DS to which the VSP will be establishing outgoing connections.

This parameter is irrelevant when the <u>routing mode</u> is "server" because in this mode the VSP never establishes outgoing connections.

If both the ip and <u>mac</u> parameter are specified the ip parameter takes precedence and mac parameter is ignored. At least one of the two parameters has to be specified to define the target DS.

# Destination MAC-address (<mac> parameter)

Syntax:	< <u>destination</u> mac="MAC-address"/>
If omitted:	ip parameter will be used (at least one- ip or mac must be specified)
<b>Relevance conditions:</b>	<pre>rmode = "client" or "server/client"</pre>
See also:	DHCP (DH) setting (DS), single-destination mode (VSP for Windows)

**Mac** (MAC-address) parameter specifies the MAC-address of the target DS to which the VSP will be establishing outgoing connections. Before establishing a connection the VSP will perform a so-called "MAC->IP mapping" to find out which IP-address currently corresponds to a specified MAC-address. When the IP-address is "resolved" the VSP will proceed in a normal way i.e. attempt to establish a data connection with the DS at this IP-address.

Specifying MAC-address instead of the IP-address is useful in cases when the DS is running with DHCP enabled (see **DHCP (DH) setting**) and its IP-address can potentially change over time. If the target DS is specified by its MAC the VSP will still be able to find it. Note, that MAC->IP mapping only works for local* Device Servers, remote Device Servers have to be referenced by their IP-address.

If both the <u>ip</u> and mac parameter are specified the ip parameter takes precedence and mac parameter is ignored. At least one of the two parameters has to be specified to define the target DS.

This parameter is irrelevant when the <u>routing mode</u> is "server" because in this mode the VSP never establishes outgoing connections.

MAC->IP mapping works just like the one on the *VSP* for *Windows* (see <u>single-destination mode</u>).

* I.e. Device Servers located on the same network segment with the PC. The definition of the network segment implies that there are only network hubs (and no routers, bridges, firewalls, etc.) between the PC and all other devices on the segment.

# **Destination data port (<port> parameter)**

Syntax:	< <u>destination</u> port="port"/>
Default value (if omitted):	"1001"
<b>Relevance conditions:</b>	<pre>rmode = "client" or "server/client"</pre>
See also:	Port Number (PN) setting (DS), single- destination mode (VSP for Windows)

**Port** (Destination data port) parameter specifies the port number on the DS to which the VSP will try to connect when establishing outgoing connections. If omitted, this parameter defaults to port 1001.

For the connection to work, the port number specified by this parameter must match the one defined by the **Port Number (PN) setting** of the DS.

This parameter is irrelevant when the <u>routing mode</u> is "server" because in this mode the VSP never establishes outgoing connections.

Port option works like the port parameter of the *VSP* for *Windows* (see <u>single-destination mode</u>).

# Destination command port (<cport> parameter)

Syntax:	< <u>destination</u> cport="cport"/>
Default value (if omitted):	"65535"
Relevance conditions:	onthefly= "outofband"
See also:	Out-of-band (UDP) programming

**Cport** (command port) parameter specifies the port number on the DS to which the VSP will send its <u>on-the-fly commands</u> (when commands are sent in the out-of-band mode). If omitted, this parameter defaults to port 65535.

Cport parameter allows you to set any command port number but the DS itself actually accepts out-of-band UDP commands on two fixed ports: 65535 and 32767 (either port can be used). For more information see <u>out-of-band (UDP) programming</u>.

# Outbound packet generation options (<packets> section)

The challenge of sending the data from the application to the DS is in deciding how to group this data into the network packets of reasonable size. Carrying too little data in each packet increases network load while sending packets with too much data slows down the delivery of this data to the DS. **Packets>** section contains parameters that define how the VSP will divide the "serial" data sent by the application into network packets.

To give you a better understanding of the options available in this section we will use the concept of data blocks. Many serial systems use some sort of communication packets (we will call them *data blocks* to avoid possible confusion with *network packets*). Since the data block is a basic unit of data transmission in such systems it is only logical to divide the data sent by the *VSP* into network packets basing on these data blocks.

Parameters in the <packets> section allow you to define conditions that "open" the data blocks (see <u>starton</u> and <u>startchar</u>), "close" the data block (<u>stopchar</u>), and "break" the data block into smaller chunks of data without closing the block (<u>maxlen</u>, <u>maxdelay</u>). The VSP ignores all the data received from the application past the end of the previous data block and before the beginning of the next data block (this means, the data is not even recorded into the <u>TX buffer</u>). The VSP sends out the data in the <u>TX buffer</u> as soon as the break or close condition is encountered.

Of course, not all systems rely on formatted data blocks, many just send unformatted "random" data. This data can be viewed as one endless data block that starts on the first character received from the application.

The section has the following syntax (**purple** marks default values that will be used if corresponding parameter is omitted):

```
<packets [maxlen="len(1024)"] [maxdelay="delay(0)"]
[starton="any|char"] [startchar="hex"] [stopchar="hex"]/>
```

Click on the links above to jump to individual parameter description topics.

Note, that default values of this section's parameters will work fine for most

309

applications. Therefore, simply defining this section as <packets/> will (most probably) be OK.

## Maximum packet length (<maxlen> parameter)

Syntax:	<pre><pre>cyackets maxlen="len"/&gt;, where len has the range of 32255 bytes</pre></pre>
Default value (if omitted):	255 bytes
Relevance conditions:	
See also:	<u>Maximum Packet Length (ML) setting</u> (DS), maximum packet length (VSP for Windows)

**Maxlen** (maximum packet length) parameter breaks the large chunks of data sent by the application into smaller portions. Once the number of bytes in the <u>TX buffer</u> reaches the limit defined by the maxlen parameter the VSP sends all the data in the buffer to the DS. This does not close the data block and all subsequently received data is still considered to be a part of the same data block. If omitted this parameter defaults to 255 bytes.

For the UDP transport protocol this parameter directly defines the (maximum) packet size of each UDP packet sent by the VSP. In TCP there is no guarantee that individual packets won't occasionally carry larger chunks of data.

Maxlen option works like the **<u>Maximum Packet Length (ML) setting</u>** of the DS and <u>maximum packet length</u> option of the *VSP* for *Windows*.

#### Maximum intercharacter delay (<maxdelay> parameter)

Syntax:	<pre><packets maxdelay="delay"></packets>, where delay is in milliseconds</pre>
Default value (if omitted):	0 milliseconds (i.e. "immediately")
Relevance conditions:	
See also:	Maximum Intercharacter Delay (MD) setting (DS), maximum intercharacter delay (VSP for Windows)

When the data block is already opened the *VSP* sends out all the data in its  $\underline{TX \text{ buffer}}$  when no new data is received from the application for a period of time defined by the **maxdelay** parameter (in milliseconds). This does not close the data block and all subsequently received data is still considered to be a part of the same data block. If omitted, this parameter defaults to 0 milliseconds, which means that the data is sent out as soon as it is received from the application.

By using this option you can combine the data that is sent by the application in "rapid succession" into a larger packets (but still not exceeding the <u>maximum packet length</u>).

Maxdelay option works like the **<u>Maximum Intercharacter Delay (MD) setting</u>** of the DS and <u>maximum intercharacter delay</u> option of the VSP for Windows.

# Start on any character (<starton> parameter)

Syntax:	<pre>spackets [starton="any char"]/&gt;</pre>
Default value (if omitted):	"any"
Relevance conditions:	
See also:	Start On Any Character (SA) setting (DS), use start/stop characters (VSP for Windows)

**Starton** (start on character) parameter defines what will constitute the beginning of the data block:

"any" (default)	First character received from the application past the end of the previous data block will open a new data block. This option is very suitable both for unformatted and formatted data.
"char"	Only a specific character (defined by the <u>start character</u> parameter will open a new data block). All characters received from the application between the end of the previous data block and the start character will be ignored and not recorded into the VSP's <u>TX buffer</u> . This option is suitable for formatted data only.

This option works like the **<u>Start On Any Character (SA) setting</u>** of the DS and <u>use start/stop characters</u> option of the *VSP* for *Windows*.

# Start character (<startchar> parameter)

Syntax:	<pre><pre>packets startchar="hex"/&gt;, where hex is the ASCII code of the start character in the HEX form (i.e. "0D" for <cr>)</cr></pre></pre>
If omitted:	start character is not defined
Relevance conditions:	<u>starton</u> = "any"
See also:	<u>Start Character Code (S1) setting</u> (DS), start characters (VSP for Windows)

**Startchar** (start character code) parameter defines the ASCII code of the character that will open the data block in case the <u>starton</u> parameter is "char". Parameter is irrelevant if <u>starton</u>= "any".

This option works like the **<u>Start Character Code (S1) setting</u>** of the DS and <u>start characters</u> option of the *VSP* for *Windows*.

# Stop character (<stopchar> parameter)

Syntax:	<pre><pre>&gt;packets stopchar="hex"/&gt;, where hex is the ASCII code of the stop character in the HEX form (i.e. "0D" for <cr>)</cr></pre></pre>
If omitted:	stop character is not defined

#### **Relevance conditions:**

See also:	Stop Character Code (E1) setting (DS),
	stop characters (VSP for Windows)

---

**Stopchar** (stop character code) parameter defines the ASCII code of the character that will close the data block. If the stop character is not defined the data block is never closed (although it is still subdivided using "breaking" parameters <u>maxlen</u> and <u>maxdelay</u>).

This option works like the **<u>Stop Character Code (E1) setting</u>** of the DS and <u>stop characters</u> option of the *VSP* for *Windows*.

# Event logging configuration for the VSP (<log> section)

<Log> section describes the logging options for events generated by the VSP. Notice, that the <log> section within the VSP section itself (i.e. inside <VSP> .... </VSP>) defines logging options for this particular VSP only. Logging options can also be defined for the <u>VSPdaemon itself</u>.

The section has the following syntax:

<log [type="syslog|pipe|file"] level="EMR|ALR|ERR|WRN|NTC|INF|DBG" [path="path"]/>

**Type** parameter defines the output destination for the event. If **type** is set to "syslog", all events are logged to a syslog facility "USER". If omitted, this parameter defaults to "syslog".

**Level** parameter defines the type of event for which this entry is created. Standard level names are used.

**Path** parameter is only needed when type="pipe" or "file" and defines the file to which events will be saved or a program that will accept events into its STDIN.

Because each entry in the format shown above specifies logging only for one type of events (**level**) the configuration file can have several entries, for example:

```
<log type="file" level="EMR" path="var/dev.0.log"/>
<log type="file" level="ALR" path="var/dev.0.log"/>
<log type="file" level="CRT" path="var/dev.0.log"/>
<log type="file" level="ERR" path="var/dev.0.log"/>
<log type="file" level="WRN" path="var/dev.0.log"/>
<log type="file" level="NTC" path="var/dev.0.log"/>
<log type="file" level="INF" path="var/dev.0.log"/>
```

In general, we recommend you to keep the list of logged events like the one shown above. Logging "DBG" events is not necessary.

# Data dump (<dump> section)

**<Dump>** section offers an option of capturing the data that flows between the VSP and the DS. The section has the following syntax:

[<dump port="no yes" path="path"/>]

**Port** parameter defines whether the data sent between the VSP and the DS will be logged.

Path parameter defines the file to which the data will be "dumped".

Dump section can be omitted completely. If it is present then both parameters must be present.

# **Update history**

This topic details update history for this document system. Updates are tracked from release published on **01JUL2004**.

# 01JUL2004 ("base") release

- New topics:
  - Power Jack (in EM100-EV Evaluation Board)
  - <u>Power Jack</u> (in EM200-EV Evaluation Board)
  - Power Jack (in EM202-EV Evaluation Board)
  - <u>Power Jack</u> (in DS100 Serial Device Server)
  - <u>DHCP</u>
  - Firmware version history
- Updated topics (this excludes some minor corrections):
  - Owner Name (ON) setting
  - Device Name (DN) setting
  - Destination IP-address (DI) setting
  - Gateway IP-address (GI) setting
  - Netmask (NM) setting
  - Update history (this very topic)

# 28JUL2004 release

- New topics:
  - DK100 DIN Rail/Wall Mounting Kit
  - <u>Comparison chart for Ethernet-to-serial Servers</u>
  - DS202 Serial Device Server (and all child topics)
  - Additional features in firmware V3.5x
  - Telnet programming
- Updated topics (this excludes some minor corrections):
  - Device Server Application Firmware (V3.14/V3.51)
  - <u>Network programming</u>
  - Authentication
  - <u>Programming priorities</u>
  - Port Number (PN) setting
  - <u>Access parameters for the address book mode</u>
  - Troubleshooting (address book mode)

• Editing the address book (Add, Remove, Edit buttons)

## 20SEP2004 release

Minor error corrections

# 21SEP2004 release