
Syntech Programmable Terminal
Programmer's Guide

V1.1

November 21, 1995

© 1995, Syntech Information Corporation
CipherLab is a registered trademark of the Syntech Information Corporation

Syntech Programmable Terminal Programmer's Guide

Table of Contents

Table Of Contents

1. REVISION HISTORY ...1-1

2. PREFACE ..2-1

3. GETTING STARTED ...3-1
3.1 SYSTEM REQUIREMENTS...3-1
3.2 INSTALLATION ...3-1
3.3 SETUP..3-3
3.4 DEVELOPMENT FLOW ...3-4

4. C COMPILER ...4-1
4.1 SIZE OF TYPES..4-1
4.2 REPRESENTATION RANGE OF INTEGERS :..4-1
4.3 FLOATING TYPES..4-2
4.4 ALIGNMENT ...4-2
4.5 REGISTER AND INTERRUPT HANDLING..4-2
4.6 RESERVED WORDS..4-2
4.7 EXTENDED RESERVED WORDS...4-3
4.8 BIT-FIELD USAGE ...4-3

5. SYNTECH LIBRARY ROUTINES : <SYNLIB.H> ..5-1
5.1 SYSTEM ...5-1
5.2 READER...5-3
5.3 BUZZER.. 5-10
5.4 CALENDAR...5-12
5.5 FILE MANIPULATION...5-15
5.6 DIGITAL INPUT / OUTPUT..5-38
5.7 LED ..5-40
5.8 MEMBRANE KEYPAD ..5-41
5.9 EXTERNAL AT KEYBOARD ...5-43
5.10 LCD ...5-46
5.11 POWER.. 5-53
5.12 RS232...5-54
5.13 RS485...5-59
5.14 MEMORY...5-65

6. STANDARD LIBRARY ROUTINES ..6-1
6.1 INPUT AND OUTPUT : <STDIO.H>...6-1
6.2 CHARACTER CLASS TEST : <CTYPE.H> ..6-1
6.3 STRING FUNCTIONS : <STRING.H>...6-2
6.4 MATHEMATICAL FUNCTIONS : <MATH.H> ...6-3
6.5 UTILITY FUNCTION : <STDLIB.H>..6-4
6.6 DIAGNOSTICS : <ASSERT.H>..6-4
6.7 VARIABLE ARGUMENT LISTS : <STDARG.H> ..6-4
6.8 NON-LOCAL JUMPS : <SETJMP.H> ...6-5
6.9 SIGNALS : <SIGNAL.H> ...6-5
6.10 DATE AND TIME FUNCTION : <TIME.H>...6-5
6.11 IMPLEMENTATION-DEFINED LIMITS : <LIMITS.H> AND <FLOAT.H>.......................................6-5

7. APPENDIX...7-1
7.1 SYNTECH LIBRARY FUNCTIONS LIST ...7-1

Syntech Programmable Terminal Programmer's Guide

Revision History 1-1

1. Revision History

♦ V1.1, Sept. 21, 1995

1) file function close_all() is not supported and is deleted from this manual. Upon
power-up, all the files are closed during system initialization.

2) file function file_length(), correct name is filelength()
3) file function get_member() is added into function list
4) speaker function volume() description is added.
5) incorrect return values descriptions for : get_member(), has_member(),

add_member(), delete_member()
6) new function clone() added

Syntech Programmable Terminal Programmer's Guide

Preface 2-1

2. Preface
This programmer's guide provides a step by step description in developing application
programs for Syntech Programmable Data Terminals such as 510, 610 and 201.
Assumption was made that the programmer has prior knowledge of the C language. Also
as the compiler is mostly ANSI compatible. Standard ANSI library routines will be
briefly described only, as they can be found in many ANSI C related literature.

This manual is divided into 3 major parts,

• Development process : a step by step procedure from compiling, linking to
downloading the program to the target machine flash memory.

• Syntech Library routines : library routines developed by Syntech to access the
terminals' specific hardware resources are described in detail.

• Standard library functions : standard library routines accompanying the C
compiler are listed.

Syntech Programmable Terminal Programmer's Guide

Getting Started 3-1

3. Getting Started
The development kit should contain the followings,

1) one full set of target machine including power adapter, cables and so on.
2) Self-test loop back tester for the target machine
3) 2 software diskettes

• C compiler : compiler, linker, library include files, library codes and so on
• Sample program source code

4) Hardware maintenance manual of the target machine.
5) This manual

3.1 System Requirements
Before installation, please make sure that your system is equipped with the follows,

Machine IBM-PC compatible
MS-DOS V3.1 or more
CPU i386 or more
Minimum RAM 4 MB
Minimum available disk space 2 MB

3.2 Installation
Insert the C-compiler diskette into the diskette drive and copy all files to the root
directory.

COPY A:*.* \ ↵

There are only 2 files in this diskette,

PKUNZIP.EXE
SYNTECH.ZIP

As these programs and codes are too large to be fitted into one single diskette. They are
compressed and stored into one single file "SYNTECH.ZIP". The program
"PKUNZIP.EXE" is used for decompression.

PKUNZIP -d SYNTECH.ZIP↵

The decompression program does not only decompress the files but also restore their
original stored format including directories (the -d option). One directory "SYNTECH"
and its 5 sub-directories are created.

Syntech Programmable Terminal Programmer's Guide

Getting Started3-2

1) BIN{xe "BIN"} : This directory contains 21 files.
• 16 execution files for compilation, linking and so on,

asm900.exe, cc900.exe, dos4gw.exe, mac900.exe,
pminfo.exe, privatxm.exe, rminfo.exe, sc900.exe,
thc1.exe, thc2.exe, tuapp.exe, tuconv.exe,
tufal.exe, tulib.exe, tulink.exe, tumpl.exe

• wemu387.386 : used when DOS extender is to be run under Windows
on a 386 machine

• mdl.exe : flash download routine
• cc.bat : batch file for compilation
• pp.bat : batch file from compilation to download
• lll.bat : batch file for downloading

Usage of these executable files will be described further in later sections.

2) ETC{xe "ETC"} : 11 files, help and version message of the C compiler

3) INCLUDE{xe "INCLUDE"}
• 15 Include files for standard library routines

assert.h ctype.h errno.h float.h limits.h
locale.h math.h setjmp.h signal.h stdarg.h
stddef.h stdio.h stdlib.h string.h time.h

• 1 Include file for Syntech Library : synlib.h

4) LIB {xe "LIB"} : Library object code files
• c900ml.lib : standard library
• synlib.lib : Syntech own library

5) README{xe "README"} : 4 files, C compiler version update information

Now that the system is successfully installed. Make a sub-directory under SYNTECH,
say ‘510TA’ (Cipher-510 Time & Attendance). Then copy all files on the sample
program source diskette to this sub-directory.

XCOPY A:*.* C:\SYNTECH\510TA ↵

Several .C source files are now copied, also a sub-directory INCLUDE is copied which
contains all include files for these C programs (not the library routines). If you are to
create your own application programs, it is recommended to make a sub-directory under
SYNTECH and put all your C source program here. (if you like, create a sub-directory
under this directory to store your own include files).

Syntech Programmable Terminal Programmer's Guide

Getting Started 3-3

\ (root) SYNTECH LIB (library code)

ETC (C compiler version information)

INCLUDE (include files for library functions)

BIN (all executable files)

README (C compiler other informations)

510TA (Time & Attendance sample program)

*.C (source file)

INCLUDE *.H(include file)

JOB1

*.C (source file)

INCLUDE *.H(include file)

JOB2

*.C (source file)

INCLUDE *.H(include file)

3.3 Setup
Before using these software, some environmental variables must be added to the
autoexec.bat. (assume drive C is installed, if not, change it to the correct drive name)

1) path = (your own path);c:\SYNTECH\BIN
So all executable files (.EXE & .BAT) can be found.

2) set THOME900=c:\SYNTECH
This is a must for the C compiler to locate all necessary files

3) set tmp = c:\tmp
skip this if tmp is already specified.

Step 3 can be ignored if tmp was already specified. This is the temporary working
directory for compiler and linker (for memory and file swapping).

To facilitate efficiency, the compiler invokes a virtual memory manager "DOS4GW". It
recognizes and supports various PCs. However, if it does not work on your PC. The
program PMINFO can be used to identify the problem. (if you have difficult using the
compiler, run the PMINFO, print all messages and then contact Syntech)

If you are using a 386 PC (no floating point unit) and is going to run these programs
under MS-Windows compatible BOX. The module "WEMU387.386" must be installed
into SYSTEM.INI.

1 copy the WEMU387.386 to the SYSTEM directory of the Windows
2 add "device=WEMU387.386" to the file SYSTEM.INI

Syntech Programmable Terminal Programmer's Guide

Getting Started3-4

3.4 Development Flow
The development process is much like writing any other C programs on PC. The flow is
illustrated as below,

C language
Source Program
(.C)

Relocatable
Object File
(.REL)

CC.BAT

Absolute
Object
(.ABS)

TULINK.EXE

Linker
Map File
(.LNK)

Motorola
S Format
(.SHX)

TUCONV.EXE

Target
Machine
Flash-Memory

MDL.EXE

Library
Object File
(.LIB)

PP.BAT

TEXT EDITOR

Assembly
List File
(.ASM)

Compile
Error Message
(CERR.LST)

3.4.1 Create Your Own C source program

The first step is to create or modify the desired C programs using any text editors. It is
recommended to use ".C" as the file extension and create them under the sub-directory
"C". And then use the "C" sub-directory as the working directory. Also, it is

Syntech Programmable Terminal Programmer's Guide

Getting Started 3-5

recommended to separate the whole programs into modules while retaining function
integrity. And put modules into separate files to facilitate compilation time.

3.4.2 Compile

A batch file "CC.BAT" under the sub-directory "C" (which is supposed to be the
working directory) has been created to simplify the compiling process.

CC program_name,

".C" is automatically appended to the program_name. For example, "CC 510" is to
compile the C program named 510.C. This batch file invokes the C compiler driver
which calls many other executable programs under the sub-directory BIN. As these
programs are invoked by the driver sequentially, their individual use can be ignored.
Also, many parameters are set in calling the compiler driver to accommodate target
machine environments. In attempting to write your own batch file, remember to put the
same parameters. These parameters are listed below,

• -XA1, -XC1, -XD1, -Xp1 : alignment setting, all 1
• -XF : no deletion of assembly file, if examination of the assembly file is not

necessary, this option can be removed
• -O3 : set optimization level (can be 0 to 3, no to maximum optimization). If code

size and performance is not a problem, this option can be removed which will
then set to the default -O0, that is, no optimization at all. If optimization is
enabled, care must be taken that some instructions might be optimized and
removed. For example,

This routine waits till sys_msec changed. And sys_msec is a system variable that
is updated each 5 ms by background interrupt. If optimization is enabled, this
whole routine is truncated as it is meaningless (which is a dead-loop). To avoid
this, the type qualifier "volatile" can be used to suppress optimization.

• -c : create object but no link
• -e cerr.lst : create error list file "cerr.lst"

After compilation is completed, a relocatable object file named "program_name.rel" is
created which can be used later by the linker to create the absolute object. As the
compiler compiles the program into assembler form during the process, an accompanying
assembler source file "program_name.asm" is also created. This file helps in debugging if
necessary. If any error occurs, they will be put into the file "CERR.LST" for further
examination.

test()
{

unsigned int old_msec;
old_msec=sys_msec;
while (old_msec == sys_msec) ;

}

Syntech Programmable Terminal Programmer's Guide

Getting Started3-6

3.4.3 Link

If the C source programs are successfully compiled into relocatable object files. The
linker must be used to create the absolute objects and then can be downloaded into the
target machine flash memory for execution. However, a linker map file must be created,.

TULINK FILENAME.LNK

This map file "FILENAME.LNK" is used to instruct the linker to allocate absolute
addresses of code, data, constant and so on according to the target machine
environments. This is a lengthy process as it depends on the hardware architecture.
Fortunately, a sample linker map file is provided and few steps are required to customize
it for your own need, while leaving hardware related stuff unchanged.

As you can see from the sample map file listed below, the only parts have to be changed
is the file names (under lined & bolded sections). If successfully linked, an absolute
object file named "FILE1.ABS" is created. Also a file named "FILE1.MAP" lists all
code, variable addresses and error messages if any.

-lm -lg /* parameters for TULINK, don't change */
FILE1.REL /* your C program name */
FILE2.REL /* your C program name */
....
....
FILEN.REL /* your C program name */
..\lib\c900ml.lib /* standard library */
..\lib\syntech.lib /* Syntech library */
memory /* follows are hardware related stuff, don't change */
{

SFR : org=0x00, len=0x80
SRAM : org=0x100000, len=0x0fffff
IO : org=0xef0000, len=0x020000
ROM : org=0xfe0000, len=0x01ffff

}
sections
{

osec1: { *(rom1) } > ROM
osec12: { *(f_code) } > ROM
osec13: { *(f_const) } > ROM
osec14: { *(f_data) } > ROM
osec15: { *(romend) } > ROM /* end of program code */
osec21: { *(ram_stack) } > SRAM /* stack area */
osec22: { *(ram0) } > SRAM
osec23: { *(ram1) } > SRAM
osec31: { *(f_area) } > SRAM
osec4: { *(ramend) } > SRAM /* end of system RAM */

}

Syntech Programmable Terminal Programmer's Guide

Getting Started 3-7

3.4.4 Format Translation

The absolute object file created by TULINK is stored in TOSHIBA's own format.
However, a program "TUCONV" can be used to transform it into popular Motorola S
format.

TUCONV{xe "TUCONV"} -Fs32 -o FILENAME .shx
FILENAME .abs

The file extension ".shx" is a must for the code downloader.

3.4.5 Download and program the flash memory

Now the Motorola S format absolute object file FILENAME.shx is successfully created.
It is ready to be downloaded into the flash memory for testing.

MDL{xe "MDL"} FILENAME COMPORT BAUDRATE PARITY
DATABITS

5 parameters must be specified and each separated by space/s.

• FILENAME : the absolute object code file name, file extension must not be
specified as ".shx" is automatically appended.

• COMPORT : A digit from 1 to 4 to specify RS232 communication port to be
used for downloading. Care must be taken that in order to support high baud rate
(up to 38400), the download program accesses the UART chip directly. The
UART must be NSC8250 compatible and their starting I/O addresses are listed
below,

Port # Starting Address
1 0x3f8
2 0x2f8
3 0x3e8
4 0x2e8

• BAUDRATE : baud rate support are 38400, 19200, 9600, 4800, 2400 and 1200.
• PARITY : the parity can be one of "E", "O" or "N" for even, odd and no parity.
• DATABITS : 7 or 8

The baud rate, parity and data bits selected must match the target machine RS232 ports
settings.

As the flash memory cannot be accessed as usual ways during erasing nor downloading.
Execution of the loader program from flash memory is not possible. A small portion of
code called loader (which can be invoked by calling the library routine "download") will
first copy itself to SRAM and then execute the loading process from SRAM. If the
downloading process was started, and for whatever reasons not completed. The code is
destroyed and the target machine cannot be off and successfully turned on again. Then
the flash memory must be taken out for programming again. To prevent this from
happening (power off, cable disconnection and so on), if the target machine is equipped

Syntech Programmable Terminal Programmer's Guide

Getting Started3-8

with operation batteries (such as 510, 610), it is recommended to connect this battery
before downloading. If the PC side was interrupted during the process, as long as the
target machine is not turned off (that is, the loader is still in the SRAM), try run the
MDL for several times to recover it.

3.4.6 Using ROM emulator

The ROM emulator can speed up development as most of them support Centronic ports
downloading which is much faster than the RS232 ports. As the flash memory features
the same pin assignments as conventional 128K X 8 ROMs, the ROM emulator can be
used. However, the follows must be taken care of

1) Do not activate the target loader as it will activate a +12V power to program
the flash memory which might damage the ROM emulator. (please refer to the
ROM emulator user's guide)

2) The RESET signal from the ROM emulator must be connected to the target
machine for proper operation. However, the RESET generation circuitry of the
target machine must be disconnected beforehand. For detail, please refer to
Hardware Manual of the target machine.

3) For 510, the self-shutdown circuit should be disconnected. (please refer to the
hardware manual)

3.4.7 From Link To Download

A batch program called "pp.bat" is created and can be used to facilitate the programming
process. Which links, transforms absolute object format and then downloads it to the
target machine. This batch file is very simple and you can modify it for your own
applications.

Syntech Programmable Terminal Programmer's Guide

C Compiler 4-1

4. C Compiler
This C compiler is for TOSHIBA TLCS-900 family 16-bit MCUs. It is mostly ANSI
compatible. However, some specific characteristics are listed below,

4.1 Size of types{xe "types"}
Type Size in byte

char, unsigned char 1
short int, unsigned short int, int, unsigned int 2
long int, unsigned long int, 4
pointer 4
structure, union 4

Note that the signed and unsigned short int is 2 bytes long. This might cause trouble in
calling sscanf(), for example,

{
char c, s[20];
int i;
strcpy(s, "123 456");
sscanf(s, "%d %hd ", &i, &c);

}

The end result will be i=123 and c=(456-256)=200, negative for signed character. And
the sscanf stores 2 bytes back to variable c's address. That is, the variable located
following c is changed.

4.2 Representation Range of Integers :
Macros concerning the representation ranges of the values of integer types are defined in
the header file <limits.h> as below,

Macro Name Contents
CHAR_BIT number of bits in a byte (the smallest object)
SCHAR_MIN minimum value of signed char type
SCHAR_MAX maximum value of signed char type
CHAR_MIN minimum value of char type
CHAR_MAX maximum value of char type
UCHAR_MAX maximum value of unsigned char type
MB_LEN_MAX number of bytes in a wide character constant
SHRT_MIN minimum value of short int type
SHRT_MAX maximum value of short int type
USHRT_MAX maximum value of unsigned short int type

continued on next page

Syntech Programmable Terminal Programmer's Guide

C Compiler4-2

continued from previous page

Macro Name Contents
INT_MIN minimum value of int type
INT_MAX maximum value of int type
UINT_MAX maximum value of unsigned int type
LONG_MIN minimum value of long int type
LONG_MAX maximum value of long int type
ULONG_MAX maximum value of unsigned long int type

4.3 Floating Types
Float types are supported and conforms to IEEE standards,

Type Size in bits
float 32

double 64
long double 64

4.4 Alignment
Alignments of different types can be adjusted. This is to facilitate CPU performance
while sacrificing memory spaces. However as all target systems utilize 8-bit data bus, the
alignment does not effect performance and is fixed to 1 for all types. In invoking the C
compiler driver -XA1, -XD1, -XC1 and -Xp1 is specified.

4.5 register and Interrupt handling
These are possible through C. However, they are inhibited as all accessing to system
resources should be made via Syntech library routines.

4.6 Reserved words
Basic reserved (common to all Cs) words are listed below,

auto double int struct break
else long switch case enum
register typedef char extern return
union const float short unsigned
continue for signed void default
goto sizeof volatile do if
static while

Syntech Programmable Terminal Programmer's Guide

C Compiler 4-3

4.7 Extended reserved words
These reserved words are specific to this C compiler and all of them start with "_ _", two
underscores.

_ _adcel _ _cdcel _ _near _ _far
_ _tiny _ _asm _ _io
_ _XWA _ _XBC _ _XDE _ _XHL
_ _XIX _ _XIY _ _XIZ _ _XSP
_ _WA _ _BC _ _DE _ _HL
_ _IX _ _IY _ _IZ _ _W
_ _A _ _B _ _C _ _D
_ _E _ _H _ _L _ _SF
_ _ZF _ _VF _ _CF
_ _DMAS0 _ _DMAS1 _ _DMAS2 _ _DMAS3
_ _DMAD0 _ _DMAD1 _ _DMAD2 _ _DMAD3
_ _DMAC0 _ _DMAC1 _ _DMAC2 _ _DMAC3
_ _DMAM0 _ _DMAM1 _ _DMAM2 _ _DMAM3
_ _NSP _ _XNSP _ _INTNEST

4.8 Bit-Field{xe "Bit-Field"} usage
The following types can be used as the bit field base types.

Type Bits
char, unsigned char 8
short int, int,
 unsigned short int, unsigned int

16

long int, unsigned long int 32

The allocation is made as follows,

1) Fields are stored from the highest bits

struct field1 {
unsigned int a:1;
unsigned int b:2;
unsigned int c:3;
unsigned int d:1;
unsigned int e:8;

}

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

a b c d e

MSB LSB

Syntech Programmable Terminal Programmer's Guide

C Compiler4-4

2) Little endien

If the base type of a bit field member is a type requiring two bytes or more
(e.g. unsigned int), the data is stored in memory after its bytes are turned
topside down.

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
Higher 8 bits Lower 8 bits

Offset
+0

+1

3) Different types : A bit field with different type is assigned to a new area

struct field {
unsigned char a:2;
unsigned short b:3;

}

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

a

b

4) Different type (signed/unsigned)

struct field {
signed short a:2;
unsigned short b:3;
signed short c:4;

}

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

a b c

5) Different type (same size)

struct field {
signed short a:5;
unsigned int b:4;

}

Syntech Programmable Terminal Programmer's Guide

C Compiler 4-5

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

a

b

The bit-field can be very useful in some cases. However, if memory is not a concern, it is
recommended not to use the bit-fields. As the code size and performance are degraded.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-1

5. Syntech Library Routines : <synlib.h>
A lot of routines are written for accessing the target system resources. However, some
resources are not available for all target systems. For example, there is no membrane
keypad for 201. No action is taken when non-existent resources are to be accessed. A
variable WHO_I_AM must be declared by the C main program to specify the target
machine.

5.1 System
5.1.1 power on reset

After reset, a portion of library functions called POR routine initializes the system
hardware, buffers, parameters and so on as follows,

• RS232, RS485 ports : all disabled
• reader ports : all disabled
• external AT keyboard : disabled
• keypad scanning (if any) : enabled
• LCD display : initialized and cleared to blank, cursor is on and set to the

upper-left corner (0,0)
• calendar chip : initialized
• LEDs : all off
• allocate stack area and other parameters

Control is then transferred to a function called "main" which is the start point of the C
program. There must be one and only one function in the C program that is called "main"
which can then initialize the system according to application needs.

5.1.2 SRAM

The total SRAM spaces range from 32KB to 1MB depending on the target machine and
are separated into 4 parts. Detail allocation map can be found in the file NAME.map,
which is an output of the linker. They are allocated sequentially as follows,

1. Stack : ram_stack, 4KB stack spaces are allocated. Like other Cs, stack is used
to transfer variables and store local variables. Care must be taken, not to
overflow the stack or system will crash. It is recommended not to declare a large
local variables (such as arrays). Instead, declare it to global which also improves
efficiency. 4KB is quite sufficient for layers of function calling.

2. System buffers and parameters : ram0 & ram1, which occupies a little more than
6 KB

3. C variables : f_area, C global variables, size depends on C programs.

4. File space : ram_end to physical SRAM end. This part is managed by Syntech
File routines and are not altered by the POR routine (as valuable informations are

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-2

stored here). On first power on or after SRAM removed/added, the function
init_free_memory() must be called to initialize the file space.

5.1.3 variables

A constant variable WHO_I_AM {xe "WHO_I_AM "}must be declared by the C main
program to specify the target machine. It must be declared as a global constant variable
(that is, outside the { }) such that other programs can get access to it.

• const int WHO_I_AM = 1; /* 510 */
• const int WHO_I_AM = 2; /* 201 */
• const int WHO_I_AM = 3; /* 610 */

Other values are reserved. As this constant is frequently referenced by library routines, it
must be correctly specified or severe error might occur (including possible damage to the
circuit).

Two time variables that are already declared can be used for counting time out and so
on. As they are updated by timer interrupt, DO NOT write to them.

• extern volatile unsigned int sys_msec{xe "sys_msec"}; /* in unit of 5 ms
*/

• extern volatile unsigned long sys_sec{xe "sys_sec"}; /* in unit of 1 second */

These two variables are cleared to 0 upon power up.

system_start
purpose Re-initialize the system

syntax void system_start();

example call system_start();

description The routine jumps to the power on reset point and restarts the system. It
functions the same as turn power off then on.

returns none

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-3

5.2 Reader
The barcode and magnetic card decoding routines consist of 5 functions : InitScanner1(
), InitScanner2(), Decode(), HaltScanner1(), and HaltScanner2(). The
InitScanner1() and InitScanner2() functions are used to initialize the respective
scanner port. The Decode() function is used to perform decoding. And the
HaltScanner1() and HaltScanner2() functions are used to stop the respective scan port
from operating.

5.2.1 Barcode and Magnetic Card Decoding

To enable barcode and magnetic card decoding capability in the system, the scanner
ports must be first initialized by use of InitScanner1() and InitScanner2() functions.
After the scanner ports are initialized, the Decode() function can be called in the
program loops to perform barcode or magnetic decoding.

It is not necessary to specify the type of scanners connected to the scanner ports. The
barcode and magnetic card decoding routines will automatically recognize the scanner
type whether it is a WAND, WAND/LASER emulation scanner, or an MSR scanner.

There are 5 variables relate to the barcode and magnetic decoding routines :
ScannerDesTbl, CodeBuf, CodeLen, CodeType, and ScannerNo. These variables are
declared by the system, the user program need not to declare them.

ScannerDesTbl : This 28 bytes of unsigned character array governs the
operation of the Decode routine.

CodeBuf : This string contains the decoded data upon successful
decoding.

CodeLen : This integer indicates the length of the decoded data upon
successful decoding.

CodeType : This character indicates the type of code (symbology) being
decoded upon successful decoding.

ScannerNo : This character indicates the scanner port being decoded upon
successful decoding.

5.2.2 Code Type

The following list shows the possible values of the CodeType variable.

Name Type Name Type
Code 39 A EAN8 with Addon 2 N
Italy Pharma-code B EAN8 with Addon 5 O
CIP 39 C EAN13 no Addon P
Industrial 25 D EAN13 with Addon 2 Q
Interleave 25 E EAN13 with Addon 5 R
Matrix 25 F MSI S

continued on next page

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-4

continued from previous page

Name Type Name Type
Codabar (NW7) G Plessey T
Code 93 H Code ABC U
Code128 I ISO Track 1 a
UPCE no Addon J ISO Track 2 b
UPCE with Addon 2 K ISO Track 1 and 2 c
UPCE with Addon 5 L ISO Track 2 and 3 d
EAN8 no Addon M

5.2.3 Scanner Description Table

The unsigned character array ScannerDesTbl governs the Decode function operation.
The following table describes the details of the ScannerDesTbl variable.

Subscriptor Bit Description
0 7 1 : Enable Code 39

0 : Disable Code 39
0 6 1 : Enable Italy Pharma-code

0 : Disable Italy Pharma-code
0 5 1 : Enable CIP 39

0 : Disable CIP 39
0 4 1 : Enable Industrial 25

0 : Disable Industrial 25
0 3 1 : Enable Interleave 25

0 : Disable Interleave 25
0 2 1 : Enable Matrix 25

0 : Disable Matrix 25
0 1 1 : Enable Codabar (NW7)

0 : Disable Codabar (NW7)
0 0 1 : Enable Code 93

0 : Disable Code 93
1 7 1 : Enable Code 128

0 : Disable Code 128
1 6 1 : Enable UPCE no Addon

0 : Disable UPCE no Addon
1 5 1 : Enable UPCE Addon 2

0 : Disable UPCE Addon 2
1 4 1 : Enable UPCE Addon 5

0 : Disable UPCE Addon 5
1 3 1 : Enable EAN8 no Addon

0 : Disable EAN8 no Addon
1 2 1 : Enable EAN8 Addon 2

0 : Disable EAN8 Addon 2
continued on next page

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-5

continued from previous page

Subscriptor Bit Description
1 1 1 : Enable EAN8 Addon 5

0 : Disable EAN8 Addon 5
1 0 1 : Enable EAN13 no Addon

0 : Disable EAN13 no Addon
2 7 1 : Enable EAN13 Addon 2

0 : Disable EAN13 Addon 2
2 6 1 : Enable EAN13 Addon 5

0 : Disable EAN13 Addon 5
2 5 1 : Enable MSI

0 : Disable MSI
2 4 1 : Enable Plessey

0 : Disable Plessey
2 3 1 : Enable Code ABC

0 : Disable Code ABC
2 2 - 0 reserved
3 7 - 0 reserved
4 7 - 0 reserved
5 7 1 : Transmitting Code 39 Start/Stop Character

0 : No Transmitting Code 39 Start/Stop Character
5 6 1 : Verifying Code 39 Check Character

0 : No Verifying Code 39 Check Character
5 5 1 : Transmitting Code 39 Check Character

0 : No Transmitting Code 39 Check Character
5 4 1 : Full ASCII Code 39

0 : Standard Code 39
5 3 1 : Transmitting Italy Pharmacode Check Character

0 : No Transmitting Italy Pharmacode Check Character
5 2 1 : Transmitting CIP39 Check Character

0 : No Transmitting CIP39 Check Character
5 1 1 : Verifying Interleave 25 Check Digit

0 : No Verifying Interleave 25 Check Digit
5 0 1 : Transmitting Interleave 25 Check Digit

0 : No Transmitting Interleave 25 Check Digit
6 7 1 : Verifying Industrial 25 Check Digit

0 : No Verifying Industrial 25 Check Digit
6 6 1 : Transmitting Industrial 25 Check Digit

0 : No Transmitting Industrial 25 Check Digit
6 5 1 : Verifying Matrix 25 Check Digit

0 : No Verifying Matrix 25 Check Digit
6 4 1 : Transmitting Matrix 25 Check Digit

0 : No Transmitting Matrix 25 Check Digit
continued on next page

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-6

continued from previous page

Subscriptor Bit Description
6 3 - 2 Select Interleave25 Start/Stop Pattern

00 : Use Industrial25 Start/Stop Pattern
01 : Use Interleave25 Start/Stop Pattern
10 : Use Matrix25 Start/Stop Pattern
11 : Undefined

6 1 - 0 Select Industrial25 Start/Stop Pattern
00 : Use Industrial25 Start/Stop Pattern
01 : Use Interleave25 Start/Stop Pattern
10 : Use Matrix25 Start/Stop Pattern
11 : Undefined

7 7 - 6 Select Industrial25 Start/Stop Pattern
00 : Use Industrial25 Start/Stop Pattern
01 : Use Interleave25 Start/Stop Pattern
10 : Use Matrix25 Start/Stop Pattern
11 : Undefined

7 5 - 4 Codabar Start/Stop Character
00 : abcd/abcd
01 : abcd/tn*e
10 : ABCD/ABCD
11 : ABCD/TN*E

7 3 1 : Transmitting Codabar Start/Stop Character
0 : No Transmitting Codabar Start/Stop Character

7 2 - 0 reserved
8 7 - 0 reserved
9 7 - 6 MSI Check Digit Verification

00 : Single Modulo 10
01 : Double Modulo 10
10 : Modulo 11 and Modulo 10
11 : Undefined

9 5 - 4 MSI Check Digit Transmission
00 : the last Check Digit is not transmitted
01 : both Check Digits are transmitted
10 : both Check Digits are not transmitted

9 3 1 : Transmitting Plessey Check Characters
0 : No Transmitting Plessey Check Characters

9 2 1 : Converting Standard Plessey to UK Plessey
0 : No Converting

9 1 1 : Converting UPCE to UPCA
0 : No Converting

9 0 1 : Converting UPCA to EAN13
0 : No Converting

continued on next page

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-7

continued from previous page

Subscriptor Bit Description
10 7 1 : Enable ISBN Conversion

0 : No Conversion
10 6 1 : Enable ISSN Conversion

0 : No Conversion
10 5 1 : Transmitting UPCE Check Digit

0 : No Transmitting UPCE Check Digit
10 4 1 : Transmitting UPCA Check Digit

0 : No Transmitting UPCA Check Digit
10 3 1 : Transmitting EAN8 Check Digit

0 : No Transmitting EAN8 Check Digit
10 2 1 : Transmitting EAN13 Check Digit

0 : No Transmitting EAN13 Check Digit
10 1 1 : Transmitting UPCE System Number

0 : No Transmitting UPCE System Number
10 0 1 : Transmitting UPCA System Number

0 : No Transmitting UPCA System Number
11 7 1 : Converting EAN8 to EAN13

0 : No Converting
11 6 1 : Transmitting Code ABC Concatenation Characters

0 : No Transmitting Code ABC Concatenation Characters
11 5 reserved
11 4 1 : Enable Reversed Barcode

0 : Disable Reversed Barcode
11 3 - 2 00 : No Read Redundancy for Scanner Port 1

01 : One Time Read Redundancy for Scanner Port 1
10 : Two Times Read Redundancy for Scanner Port 1
11 : Three Times Read Redundancy for Scanner Port 1

11 1 - 0 00 : No Read Redundancy for Scanner Port 2
01 : One Time Read Redundancy for Scanner Port 2
10 : Two Times Read Redundancy for Scanner Port 2
11 : Three Times Read Redundancy for Scanner Port 2

12 7 1 : Industrial 25 Code Length Limitation in Max/Min Length
Format

0 : Industrial 25 Code Length Limitation in Fix Length
Format

12 6 - 0 Industrial 25 Max Code Length / Fixed Length 1
13 7 - 0 Industrial 25 Min Code Length / Fixed Length 2
14 7 1 : Interleave 25 Code Length Limitation in Max/Min Length

Format
0 : Interleave 25 Code Length Limitation in Fix Length

Format
14 6 - 0 Interleave 25 Max Code Length / Fixed Length 1

continued on next page

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-8

continued from previous page

Subscriptor Bit Description
15 7 - 0 Interleave 25 Min Code Length / Fixed Length 2
16 7 1 : Matrix 25 Code Length Limitation in Max/Min Length

Format
0 : Matrix 25 Code Length Limitation in Fix Length Format

16 6 - 0 Matrix 25 Max Code Length / Fixed Length 1
17 7 - 0 Matrix 25 Min Code Length / Fixed Length 2
18 7 1 : MSI Code Length Limitation in Max/Min Length Format

0 : MSI Code Length Limitation in Fix Length Format
18 6 - 0 MSI 25 Max Code Length / Fixed Length 1
19 7 - 0 MSI Min Code Length / Fixed Length 2
20 7 - 4 Scan Mode for Scanner Port 1

0000 : Auto Off Mode
0001 : Continuous Mode
0010 : Auto Power Off Mode
0011 : Alternate Mode
0100 : Momentary Mode
0101 : Repeat Mode
0110 : Laser Mode
0111 : Test Mode

20 3 - 0 Scan Mode for Scanner Port 2
0000 : Auto Off Mode
0001 : Continuous Mode
0010 : Auto Power Off Mode
0011 : Alternate Mode
0100 : Momentary Mode
0101 : Repeat Mode
0110 : Laser Mode
0111 : Test Mode

21 Scanner Time-out Duration in seconds for Scanner Port 1
22 Scanner Time-out Duration in seconds for Scanner Port 2

23 - 28 reserved

Decode
purpose Perform barcode and magnetic card decoding.

syntax int Decode();

example call while (1) { if (Decode()) break; }

description Once the scanner ports are initialized (by use of InitScanner1 and
InitScanner2 functions), call this Decode function to perform barcode and
magnetic card decoding. This function should be called constantly in
user's program loops when barcode & magnetic card decoding is
required.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-9

If the barcode and magnetic card decoding is not required for a long
period of time, it is recommended that the scanner ports should be
stopped by use of the HaltScanner1 & HaltScanner2 functions.

If the Decode function decodes successfully, the decoded data will be
placed in the string variable CodeBuf with a string terminating character
appended. And the integer variable CodeLen, and the character variable
CodeType will reflect the length and the code type of the decoded data
respectively. The character variable ScannerNo will also indicate the
scanner ports being decoded.

returns Upon successful decoding, the Decode function returns an integer whose
value equals to the string length of the decoded data. If decoding failed,
an integer value of 0 is returned.

HaltScanner1, HaltScanner2
purpose Stop respective scanner port from operating.

syntax void HaltScanner1();
void HaltScanner2();

example call HaltScanner1();
HaltScanner2();

description Use HaltScanner1 function to stop scanner port 1 from operating and use
HaltScanner2 function to stop scanner port 2 from operating. To restart a
halted scanner port, the respective initialization function (InitScanner1
and InitScanner2) must be called.

It is recommended that the scanner ports should be stopped if the
barcode and magnetic card decoding is not required for a long period of
time.

returns These two functions have no return values.

InitScanner1, InitScanner2
purpose Initialize respective scanner port.

syntax void InitScanner1();
void InitScanner2();

example call InitScanner1();
InitScanner2();
while (1) { if (Decode()) break; }

description Use InitScanner1 function to initialize scanner port 1 and use
InitScanner2 function to initialize scanner port 2. The scanner ports won't
work unless they are initialized.

returns These two functions have no return values.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-10

5.3 Buzzer
This section describes the beeper manipulation routines. The activating of beeper is
directed by specifying a beeper sequence which is a series of beep frequency / beep
duration pairs. Once a beeper sequence is specified, the activation of the beeper
according to it is automatically handled by the background program. There is no need for
the application program waiting for the beeper stops.

Also there are routines for determining whether a beeper sequence is under going, or to
terminate a beeper sequence immediately.

5.3.1 Beeper Sequence{xe "Beeper Sequence"}

A beeper sequence is an integer array which is used to instruct how the beeper activates.
It is comprised of beep frequency{xe "beep frequency"} / beep duration{xe "beep
duration"} pairs. Each pair represents one beep. A beep with beep duration value of 0
represents end of beeper sequence, the beeper will then terminate activation.

5.3.2 Beep Frequency

A beep frequency is an integer used to specify the frequency (tone) when the beeper
activates. The actual frequency that the beeper activates is not the value specified to the
beep frequency. It is calculated by the following formula.

Beep Frequency = 76000 / Actual Frequency Desired

For instance, to get a frequency of 4KHz, the value of beep frequency should be 19. If
no sound is desired (pause), the beep frequency should be set to 0. A beep with
frequency 0 does not terminate the beeper sequence. Suitable frequency for the beeper
ranges from 1 to 6 KHz, where peak at 4 KHz.

5.3.3 Beep Duration

A beep duration is an integer used to specify how long the beeper activates with a
specified beep frequency. Beep duration is specified in units of 0.1 second. To get a beep
of 1 second, the beep duration should be 10. A beep duration with value of 0 will
terminate the beeper sequence.

beeper_status
purpose To see whether a beeper sequence is under going or not.

syntax int beeper_status();

example call while (beeper_status()); /* wait till beeper sequence complete */

description The beeper_status function checks if there is a beeper sequence in
progress.

returns 1 if beeper sequence still in progress, 0 otherwise

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-11

off_beeper
purpose Terminate beeper sequence.

syntax void off_beeper();

example call off_beeper();

description The off_beeper function terminates beeper sequence immediately if there
is a beeper sequence in progress.

returns The off_beeper function has no return value.

on_beeper
purpose Assign a beeper sequence to instruct beeper action.

syntax void on_beeper(int* sequence);
int* sequence;
 /*pointer to integer array where beeper sequence resides */

example call int two_beeps[]= { 19, 10, 0, 10, 19, 10, 0, 0 };
on_beeper(two_beeps);

description The on_beeper function assigns a beeper sequence to instruct how the
beeper activates. If there is a beeper sequence already in progress, the
newly assigned beeper sequence will override the old one.

returns The on_beeper function has no return value.

volume
purpose Set buzzer volume

syntax void volume(int level);
int level; /* buzzer volume level from 0 to 3 */

example call volume(3); /* set to loudest */

description The volume function fine tunes the desired buzzer volume according to
application needs.

returns None

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-12

5.4 Calendar
This section describes the calendar manipulation routines. The system date and time are
kept by the calendar chip , and they can be retrieved from or set to the calendar chip by
the get_time and set_time functions. A backup rechargeable NiCd battery keeps the
calendar chip running even when power is turn off.

Note that the system time variable sys_msec{xe "sys_msec"}, sys_sec is maintained by
CPU timers and has nothing to do with this calendar chip. Accuracy of these two time
variables depends on the CPU clock and is not suitable for precise time manipulation.
Also, they are reset to 0 upon power up.

5.4.1 Timer Adjustment

The calendar chip can be fine tuned to compensate for a fast or slow clock. This is an
outstanding feature for those applications which need punctual system time such as a
time/clock application. The tuning of the calendar chip is done by modifying the value of
the trimming register of the calendar chip. The adjust_timer function can be used to
modify the value of the trimming register.

5.4.2 Trimming Register

The frequency of the calendar chip can be tuned in units of ppm via a digital trimming
register. The trimming range is from 0 to 255 ppm. The bigger the value of the trimming
register the slower the calendar chip runs. For instance, if the calendar chip is 1 second
slow in one day then the value of the trimming register should decrease 12 to correctly
adjust the calendar chip. During system initialization, this register is set to 186.

1 sec/ 1 day = 1000000 / (24 hours X 60 min X 60 sec) = 11.57 ppm ~= 12 ppm

5.4.3 Leap Year

The leap-year day is automatically handled by the calendar chip. The year field set to the
calendar chip must be in AD year to get the correct leap year operation.

adjust_timer
purpose Modify the value of the trimming register of the calendar chip.

syntax int adjust_timer(int offset);

int offset; /* the amount of modification made to the trimming register */

example call adjust_timer(12);

description The adjust_timer function modifies the value of the trimming register of
the calendar chip with the amount specified in the argument offset. If
offset is positive, the adjust_timer function increases the trimming register
by this value and thus slows down the calendar chip. If offset is negative,

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-13

the adjust_timer function decreases the trimming register by this value
and thus makes the calendar chip runs faster. If offset is 0, no
modification is made to the trimming register.

returns The adjust_timer function returns the value of the trimming register after
the operation. If the calendar chip malfunctions, the return value will be 0
to indicate error.

comments Since the value allowed for the trimming register is from 0 to 255.
Decreasing the value of trimming register down to 0 is possible but
should be avoided. Because a trimming register with a value of 0 also
indicates error in the return value of the adjust_timer function.

get_time
purpose Get current date and time.

syntax int get_time(char*cur_time);
char* cur_time; /*pointer of character array where the date and

time will be copied to */

example call get_time(system_time);

description The get_time function reads current date and time from the calendar chip
and copies them to a character array specified in the argument cur_time.
The character array cur_time allocated must have a minimum of 13 bytes
to accommodate the date, time, and the string terminator. The format of
the system date and time is listed below.

"YYMMDDhhmmss"
where YY : year, 2 digits

MM : month, 2 digits
DD : day, 2 digits
hh : hour, 2 digits

mm : minute, 2 digits
ss : second, 2 digits

returns Normally the get_time function always returns an integer value of 1. If the
calendar chip malfunctions, the get_time function will then return 0 to
indicate error.

set_time
purpose Set new date and time to the calendar chip.

syntax int set_time(char* new_time);
char* new_time;

example call set_time("940105125800");/* JAN 5, 1994 12:58:00 */

description The set_time function set a new system date and time specified in the
argument new_time to the calendar chip. The character string new_time
must have the following format,

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-14

"YYMMDDhhmmss"
where YY : year, 2 digits, 0-99

MM : month, 2 digits, 1-12
DD : day, 2 digits, 1-31
hh : hour, 2 digits, 0-23

mm : minute, 2 digits, 0-59
ss : second, 2 digits, 0-59

returns Normally the set_time function always returns an integer value of 1. If the
calendar chip malfunctions, the set_time function will then return 0 to
indicate error. Also, if the format is illegal (e.g. set hour to 25), the
operation is simply denied and the time is not changed.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-15

5.5 File Manipulation
This section describes the file manipulation routines provided. These routines can help to
make the manipulation of the transaction data and the implementation of data base
system easy. Although the programmer can device his / her own ways of manipulating
the data by declaring some huge arrays, the resulting program will become bigger and
harder to be debugged, and will also be less efficient in execution speed and memory
usage.

There are two different types of file structures supported. The first one is a sequential file
structure which is much like the ordinary sequential file but is modified to also support
FIFO data structure manipulation. We call this type of files as DAT files. The DAT files
are usually used to store transaction data.

Another file structure supported is an index sequential file structure. Table look-up and
report generation are easily done by use of the index sequential file routines. There are
actually two types of files exist in this file structure. One is the files which store the data
records / members, and the other is the associate key /index files. These two types of files
are called DBF files and IDX files respectively. We will talk about these two file
structures in detail later in this section.

Please be noted that not all of the routines described in this section apply to both types of
file structures. In the paragraph of each routine description, we have listed the target file
types that the routine under description applies.

5.5.1 File Space

The memories (SRAM) installed are logically divided into three parts : the system space,
the user space, and the file space. The system space is used by the system program,
consists of system parameters, file allocation table, directory area, and stack area. And
the system space takes up about 13K bytes of memory (for 510 T&A sample program).
The user space is used by the static variables declared by the application program. And
the remaining free memories are all assigned to the file space where file manipulation
takes place. For the maximum file space, the static variables declared by the application
program must be limited. That is, the smaller the user space the larger the file space.

5.5.2 File Name

A file name is a null terminated character string of at least 1 and up to 8 characters long
(not including the terminating null), used to identify each file in the system. There is no
file extension exists as in MS-DOS operation system. The file name is case sensitive in
identifying files in the system. A file name is given to each file when the file is created. If
a file name specified is more than 8 characters, it will be truncated to 8 characters long.
The file name of each file can be changed by use of the rename function after the file is
created.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-16

5.5.3 File Handle

File handles are used to identify files after files are opened. Most of the file manipulation
functions provided use file handles not file names to specify files. A file handle is a
positive integer (excludes 0) returned from system when a file is created or opened.
Subsequent file operation can then use the file handle to identify the file.

5.5.4 Error Code

All of the file manipulation routines discussed in this section have an error code to
indicate operation success or the cause of error encountered when they are called. The
error code is an integer value set to the global variable error_code. The error code can
be fetched by directly referencing the global variable error_code, or by making a call to
the read_error_code function. Error code with a value of 0 indicates no error
encountered.

5.5.5 Directory

The file system does not support tree like directory structure, which means there is no
way to create a sub-directory. And the maximum number of files can exist in the system
is limited to 16 files (includes all DAT files, DBF files, and their associate IDX files). The
file directory information can be fetched by use of filelist routine.

5.5.6 DAT Files

The DAT files have a sequential file structure, and all the functions that are needed to
manipulate sequential files are included in the system. Besides the ordinary sequential file
manipulation routines, we have included some special routines to support FIFO data
structure.

The data from the beginning of a DAT file can be removed from the DAT file by calling
the delete_top and the delete_topln functions. The new file top (beginning) position, the
file pointer position, and the size of the DAT file will be adjusted accordingly after
calling to these two routines. And the append and appendln functions can write data to a
DAT file from the EOF (end of file) position no matter where the file pointer points to.
That is, the file pointer position is not changed after calling these functions.

By use of the four functions mentioned above, the FIFO data structure can be easily
implemented and this is the way we usually handle the transaction data input and upload
to the host computer.

5.5.7 DBF Files and IDX Files

The DBF files and the IDX files together form the platform of the data base system. The
DBF files are files which store the actual data records (members), whereas the IDX files
are the key (index) files of the DBF files. A DBF file can have at most 8 IDX files. The

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-17

IDX files has the same file name as the associate DBF file as you can see in the directory
information fetched by calling the filelist function, and each IDX files are further
identified by the key numbers ranging from 1 to 8. An IDX file can be created by use of
the create_index function only when the associated DBF is empty. When it is not , use
rebuild_index function instead to create IDX files.

Data records (members) are not allowed to be accessed directly from the DBF files but
rather through their associate IDX files as can be seen from the function description. The
file pointers of the IDX files (index pointers) do not represent the address of the data
records in the DBF files, but rather the rank number (starting from 1) of the specific data
record in the IDX files. The data record sequence in the IDX files are always sorted in
the ascending key value order.

access
target file type DAT DBF

purpose Check file existence.

syntax int access(char* filename);
char* filename; file name of file being checked

example call if (access("data1") == 0) send_lcds("data1 exist!\n");

description Check if the file specified by filename exists. If filename exceeds 8
characters, it will be truncated to 8 characters long.

returns If access finds the file specified by filename exist, it returns an integer
value of 0. In case of error or the file does not exist, access will return an
integer value of -1 and an error code is set to the global variable
error_code to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
1 filename is a NULL string.
2 File specified by filename does not exist.

add_member
target file type DBF

purpose Add a member to a DBF file.

syntax int add_member(int DBF_fd, char* member);
int DBF_fd; file handle of target DBF file
char* member; pointer to a character array from where the

added member is copied

example call add_member(DBF_fd, member);

description The add_member function adds a member specified by the argument
member to a DBF file whose file handle is DBF_fd and add index to all
the IDX file associated to it. If the length of the added member is greater

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-18

than the length defined for the DBF file (member_len in create_DBF
function), the member will be truncated.

returns If add_member successfully adds the member, it returns an integer value
of 1. In case of error, add_member will return an integer value of -1 or 0
and an error code is set to the global variable error_code to indicate the
error condition encountered. Possible error codes and their interpretation
are listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DBF file.
 8 DBF_fd is not a file handle of a previously

opened file.
10 No free file space for adding member.
19 The member specified by the argument member

is a null string.

append
target file type DAT

purpose Write a specified number of bytes to bottom (end-of-file position) of a
DAT file.

syntax int append(int fd, char* buffer, unsigned count);
int fd; file handle of the target DAT file
char* buffer; pointer to array of characters representing data to be written
unsigned count;number of bytes to be written

example call append(fd, 1234567890, 10);

description The append function writes the number of bytes specified in the argument
count from the character array buffer to the bottom of a DAT file whose
file handle is fd. Writing of data starts at the end-of-file position of the
file, and the file pointer position is unaffected by the operation. The
append function will automatically extend the file size of the file to hold
the data written.

returns The append function returns the number of bytes actually written to the
file. In case of error, append returns an integer value of -1 and an error
code is set to the global variable error_code to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.
10 No more free file space for file extension.

comments Since append returns an signed integer, the return value should be
converted to unsigned int when writing more than 32,767 bytes of data to
a file or the return value will be negative. Because the number of bytes to
be written is specified in an unsigned integer argument, you could
theoretically write 65,535 bytes at a time. But 65,535 (or FFFFh) also

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-19

means -1 in signed representation, so when writing 65,535 bytes the
return value indicates an error. The practical maximum then is 65,534.

appendln
target file type DAT

purpose Write a line terminated by a null character (\0) to the bottom (end-of-file
position) of a DAT file.

syntax int appendln(int fd, char* buffer);
int fd; file handle of the target DAT file
char* buffer; pointer to array of characters representing data to be written

example call appendln(fd, data_buffer);

description The appendln function writes a line terminated by a null character from
the character array buffer to a DAT file whose file handle is fd.
Characters are written to the file until a null character (\0) is encountered.
The null character is also written to the file. Writing of data starts at the
end-of-file position of the file, and the file pointer position is unaffected
by the operation. The appendln function will automatically extend the file
size of the file to hold the data written.

returns The appendln function returns the number of bytes actually written to the
file (includes the null character). In case of error, appendln returns an
integer value of -1 and an error code is set to the global variable
error_code to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.
 9 no null character found in buffer
10 No more free file space for file extension.

comments Since appendln returns an signed integer, the return value should be
converted to unsigned int when writing more than 32,767 bytes of data to
a file or the return value will be negative. You could theoretically write
65,535 bytes at a time. But 65,535 (or FFFFh) also means -1 in signed
representation, so when writing 65,535 bytes the return value indicates an
error.

chsize
target file type DAT

purpose Extends or truncates a DAT file.

syntax int chsize(int fd, long new_size);
int fd; file handle of the target DAT file
long new_size; new length of file in bytes

example call if (chsize(fd,0L)) send_lcds("file truncated!\n");

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-20

description The chsize function truncates or extends the file specified by the
argument fd to match the new file length in bytes given in the argument
new_size. If the file is truncated, all data beyond the new file size will be
lost. If the file is extended, no initial value is filled to the newly extended
area.

returns If chsize successfully changes the file size of the specified DAT file, it
returns an integer value of 0. In case of error, chsize will return an integer
value of -1 and an error code is set to the global variable error_code to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.
10 No more free file space for file extension.

close
target file type DAT

purpose Close a DAT file.

syntax int close(int fd);
int fd; file handle of the target DAT file

example call if (close(fd)) send_lcds("file closed!\n");

description Close a previously opened or created DAT file whose file handle is fd.

returns close returns an integer value of 0 to indicate success. In case of error,
close returns an integer value of -1 and an error code is set to the global
variable error_code to indicate the error condition encountered. Possible
error codes and their interpretation are listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.

close_DBF
target file type DBF

purpose Close DBF file together with its IDX file.

syntax int close_DBF(int DBF_fd);
int DBF_fd; file handle of the target DBF file

example call if (close_DBF(DBF_fd)) send_lcds("DBF file closed!\n");

description Close a previously opened or created DBF file whose file handle is
DBF_fd. The close_DBF function not only closes the specified DBF file
but also closes all the IDX files associated to it.

returns The close_DBF function returns an integer value of 0 to indicate success.
In case of error, close_DBF returns an integer value of -1 and an error
code is set to the global variable error_code to indicate the error

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-21

condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
 4 File specified by fd is not a DBF file.
 8 fd is not a file handle of a previously opened file.

create_DBF
target file type DBF

purpose Create a DBF file and get the file handle of the file for further processing.

syntax int create_DBF(char* filename, unsigned member_len);
char* filename; file name of the DBF file being created
unsigned member_len; member length of the DBF file

example call if (fd = create_DBF("data1",64) > 0) send_lcds("data1 created!\n");

description The create_DBF function creates a DBF file specified by filename and
gets the file handle of the file. A file handle is a positive integer (excludes
0) used to identify the file for subsequent file manipulations on the file.
The argument member_len supplied in the function call specifies the
maximum member length for the DBF file. Any members subsequently
added to this DBF file with length greater than member_len will be
truncated to this length. If filename exceeds 8 characters, it will be
truncated to 8 characters long.

returns If create_DBF successfully creates the DBF file, it returns the file handle
of the file being created. In case of error, create_DBF will return an
integer value of -1 and an error code is set to the global variable
error_code to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
 1 filename is a NULL string.
 6 Can't create file. Because the maximum number

of files allowed in the system is exceeded.
 9 Illegal argument. member_len equals 0.
12 File specified by filename already exists.

create_index
target file type DBF

purpose Create an IDX file of a DBF file.

syntax int create_index(int DBF_fd, int key_number, int key_offset, int ey_len);
int DBF_fd; file handle of a DBF file which the target index

file associated to
int key_number;key number of the index file to be created
int key_offset; the byte offset address in member where the key value begins
int key_len; the length (size of) of key value for the index

example call create_index(DBF_fd,1,0,10);

description The create_index function creates an IDX file specified by the argument
key_number which is associated to a DBF file whose file handle is

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-22

DBF_fd. The key value field for the index is specified by the argument
key_offset and key_len. The argument key_offset specifies the byte offset
address where the key value in a member begins. And key_len specifies
the length of the key value. The key field defined by key_offset and
key_len should be within the member as defined by member_len in
create_DBF function. That is, key_offset plus key_len should not greater
than member_len. The create_index function can only be called before
any members are added to the DBF file. That is, when the DBF file is
empty (no members exist). If any member should exist in the DBF file,
rebuild_index should be used instead.

returns If create_index successfully creates an IDX file, it returns an integer value
of 0. In case of error, create_index will return an integer value of -1 and
an error code is set to the global variable error_code to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DBF file.
 6 Can't create file. Because the maximum number

of files allowed in the system is exceeded.
 8 DBF_fd is not a file handle of a previously

opened file.
 9 Illegal value in argument key_offset,and/or key_len.
11 Illegal value in argument key_number.
16 DBF file specified by DBF_fd is not empty.
17 IDX file specified by key_number already exists.

delete_member
target file type DBF

purpose Delete a member of a DBF file.

syntax int delete_member(int DBF_fd, int key_number);
int DBF_fd; file handle of target DBF file
int key_number;key number of the index file whose index pointer

points to the target member

example call delete_member(DBF_fd, 1);

description The delete_member function deletes the member pointed by the index
pointer of an IDX file whose key number is specified in the argument
key_number. The DBF file which the IDX file associates to is specified in
the argument DBF_fd.

returns If delete_member successfully deletes the member, it returns an integer
value of 1. In case of error, delete_member will return an integer value of
-1 or 0 and an error code is set to the global variable error_code to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DBF file.
 8 DBF_fd is not a file handle of a previously

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-23

opened file.
10 Internal error in the DBF structure. All index

files should be rebuild.
11 The IDX file specified by key_number does not

exist.
13 There are no members in the DBF file.
20 Internal error in the DBF structure. All index

files should be rebuild.
21 Internal error in the DBF structure. All index

files should be rebuild.

delete_top
target file type DAT

purpose Remove a specified number of bytes from top (beginning-of-file position)
of a DAT file.

syntax int delete_top(int fd, unsigned count);
int fd; file handle of the target DAT file
unsigned count;number of bytes to be removed

example call delete_top(fd, 80);

description The delete_top function removes the number of bytes specified in the
argument count from a DAT file whose file handle is fd. Removing of
data starts at the beginning-of-file position of the file. The file pointer
position is adjusted accordingly by the operation. For instance, if initially
the file pointer points to the tenth character , after removing 8 character
from the file, the new file pointer will points to the second character of
the file. The delete_top function will resize the file size automatically.

returns The delete_top function returns the number of bytes actually removed
from the file. In case of error, delete_top returns an integer value of -1
and an error code is set to the global variable error_code to indicate the
error condition encountered. Possible error codes and their interpretation
are listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.

comments Since delete_top returns an signed integer, the return value should be
converted to unsigned int when removing more than 32,767 bytes of data
from a file or the return value will be negative. Because the number of
bytes to be removed is specified in an unsigned integer argument, you
could theoretically remove 65,535 bytes at a time. But 65,535 (or FFFFh)
also means -1 in signed representation, so when removing 65,535 bytes
the return value indicates an error. The practical maximum then is
65,534.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-24

delete_topln
target file type DAT

purpose Remove a line terminated by a null character (\0) from the top
(beginning-of-file position) of a DAT file.

syntax int delete_topln(int fd);
int fd; file handle of the target DAT file

example call delete_topln(fd);

description The delete_topln function removes a line terminated by a null character
from a DAT file whose file handle is fd. Characters are removed from the
file until a null character (\0) or end-of-file is encountered. The null
character is also removed from the file. Removing of data starts at the top
(beginning-of-file position) of the file, and the file pointer position is
adjusted accordingly. The delete_topln function will resize the file size
automatically.

returns The delete_topln function returns the number of bytes actually removed
from the file (includes the null character). In case of error, delete_topln
returns an integer value of -1 and an error code is set to the global
variable error_code to indicate the error condition encountered. Possible
error codes and their interpretation are listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.

comments Since delete_topln returns an signed integer, the return value should be
converted to unsigned int when removing more than 32,767 bytes of data
from a file or the return value will be negative. You could theoretically
remove 65,535 bytes at a time. But 65,535 (or FFFFh) also means -1 in
signed representation, so when removing 65,535 bytes the return value
indicates an error.

eof
target file type DAT

purpose Check if file pointer of a DAT file reaches end of file.

syntax int eof(int fd);
int fd; file handle of the target DAT file

example call if (eof(fd) == 1) send_lcds("end of file reached!\n");

description The eof function checks if the file pointer of the DAT file whose file
handle is specified in the argument fd, points to end-of-file.

returns The eof function returns an integer value of 1 to indicate an end-of-file
and a 0 when not. In case of error, eof returns an integer value of -1 and
an error code is set to the global variable error_code to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-25

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.

filelength
target file type DAT

purpose Get file length information of a DAT file.

syntax long filelength(int fd);
int fd; file handle of the target DAT file

example call data_size = filelength(fd);

description The filelength function returns the size in number of bytes of the DAT file
whose file handle is specified in the argument fd.

returns The long integer value returned by filelength is the size of the DAT file in
number of bytes. In case of error, filelength returns a long value of -1L
and an error code is set to the global variable error_code to indicate the
error condition encountered. Possible error codes and their interpretation
are listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.

filelist
purpose Get file directory information.

syntax int filelist(char* dir);
char* dir; pointer to a character array where the file directory

information is copied to

example call total_file = filelist(dir);

description The filelist function copies the file name, file type, and file size
information (separated by a blank character) of all files in existence into a
character array specified in the argument dir.

returns The filelist function returns the number of files currently exist in the
system.

free_memory
purpose Get free memory size information.

syntax long free_memory();

example call available_memory = free_memory();

description The free_memory function gets the information of the amount of free
(unused) memory of the file space.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-26

returns The free_memory function returns a long integer indicating the amount of
free memory in bytes.

target file type DBF

get_member
purpose Read the member pointed by the index pointer.

syntax int get_member(int DBF_fd, int key_number, char* buffer);
int DBF_fd; file handle of a DBF file which the target index

file associated to
int key_number;key number of the target index file
char* buffer; pointer to a character array where the member is copied to

example call if (get_member(DBF_fd,1,buffer) == 0) send_lcds(buffer);

description The get_member function copies the member pointed to by a index
pointer to a character array specified in the argument buffer. The IDX file
concerned is specified in the argument key_number which is associated to
a DBF file whose file handle is DBF_fd.

returns The get_member function returns an integer value of 1 to indicate
success. In case of error, get_member returns an integer value of -1 or 0
and an error code is set to the global variable error_code to indicate the
error condition encountered. Possible error codes and their interpretation
are listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DBF file.
 8 DBF_fd is not a file handle of a previously

opened file.
11 Index file specified by key_number does not exist.
13 There is no members in the DBF file specified.

has_member
target file type DBF

purpose Check if a specific member exist in an IDX file.

syntax int has_member(int DBF_fd, int key_number, char* key_value);
int DBF_fd; file handle of a DBF file which the target index

file associated to
int key_number;key number of the target index file
char* key_value;pointer of a character array which is used to

identify a specific member

example call if (has_member(DBF_fd,1,"WANG") == 0)
 send_lcds("WANG is on the name list!\n");

description The has_member function tries to locate a member which matches the
key value specified in the argument key_value in an IDX file key_number.
The IDX file is associated to a DBF file whose file handle is specified in
the argument DBF_fd. If there is a complete match to the key_value , the

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-27

index pointer will point to the first of all matches. In case there are
several members with the same key value, the user can then check each
member sequentially from the member pointed by the index pointer to
find the desired member. If has_member does not find a complete match
in the index, the index pointer will still point to the first member with key
value greater than key_value specified.

returns The has_member function returns an integer value of 1 to indicate a
complete match in key value has been found, 0 if not. In case of error,
has_member returns an integer value of -1 and an error code is set to the
global variable error_code to indicate the error condition encountered.
Possible error codes and their interpretation are listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DBF file.
 8 DBF_fd is not a file handle of a previously

opened file.
11 Index file specified by key_number does not exist.
14 Key_value specified is a null string.

lseek
target file type DAT

purpose Move file pointer of a DAT file to a new position.

syntax long lseek(int fd, long offset, int origin);
int fd; file handle of the target DAT file
long offset; offset of new position (in bytes) from origin
int origin; constant indicating the position from where to offset

example call lseek(fd, 512L, 0); /* skip 512 bytes */

description The lseek function moves the file pointer of a DAT file whose file handle
is specified in the argument fd to a new position within the file. The new
position is specified with an offset byte address to a specific origin. The
offset byte address is specified in the argument offset which is a long
integer. There are 3 possible values for the argument origin. The values
and their interpretations are listed below.

Value of origin Interpretation
 1 beginning of file
 0 current file pointer position
-1 end of file

returns When successful, lseek returns the new byte offset address of the file
pointer from the beginning of file. In case of error, lseek returns a long
value of -1L and an error code is set to the global variable error_code to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-28

 9 Illegal origin value.
15 New position is beyond end-of-file.

lseek_DBF
target file type DBF

purpose Move index pointer of an IDX file to a new position.

syntax long lseek_DBF(int DBF_fd, int key_number, long offset, int origin);
int DBF_fd; file handle of a DBF file which the target index file

associated to
int key_number;key number of the target index file
long offset; offset of new position (in ranks) from origin
int origin; constant indicating the position from where to offset

example call lseek_DBF(DBF_fd, 1, 1L, 0); /* move to next member */

description The lseek_DBF function moves the index pointer of a INDEX file which
is specified in the argument key_number to a new position. The index file
is associated to a DBF file whose file handle is in the argument DBF_fd.
The new position is specified with an offset rank address to a specific
origin. The offset rank address is specified in the argument offset which is
a long integer. There are 3 possible values for the argument origin. The
values and their interpretations are listed below.

Value of origin Interpretation
 1 first index of index file
 0 current index pointer position
-1 last index of index file

returns When successful, lseek_DBF returns the new rank position that the index
pointer points to. In case of error, lseek_DBF returns a long value of -1L
and an error code is set to the global variable error_code to indicate the
error condition encountered. Possible error codes and their interpretation
are listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DBF file.
 8 DBF_fd is not a file handle of a previously

opened file.
 9 Illegal origin value.
11 Index file specified by key_number does not exist.
15 New position is beyond end-of-file.

member_in_DBF
target file type DBF

purpose Determine how many members exist in a DBF file.

syntax long member_in_DBF(int DBF_fd);
int DBF_fd; file handle of the target DBF file

example call total_member = member_in_DBF(DBF_fd);

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-29

description The member_in_DBF function returns the number of member in a DBF
file whose file handle is specified in the argument DBF_fd.

returns The long integer value returned by member_in_DBF is the number of
members exist in the DBF file. In case of error, member_in_DBF returns
a long value of -1L and an error code is set to the global variable
error_code to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DBF file.
 8 DBF_fd is not a file handle of a previously

opened file.

open
target file type DAT

purpose Open a DAT file and get the file handle of the file for further processing.

syntax int open(char* filename);
char* filename; file name of file to be opened

example call if (fd = open("data1") > 0) send_lcds("data1 opened!\n");

description The open function opens a DAT file specified by filename and gets the
file handle of the file. A file handle is a positive integer (excludes 0) used
to identify the file for subsequent file manipulations on the file. If the file
specified by filename does not exist, it will be created first. If filename
exceeds 8 characters, it will be truncated to 8 characters long. After the
file is opened, the file pointer points to the beginning of file.

returns If open successfully opens the file, it returns the file handle of the file
being opened. In case of error, open will return an integer value of -1 and
an error code is set to the global variable error_code to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
1 filename is a NULL string.
4 File specified by filename is not a DAT file.
5 File specified by filename is already opened.
6 Can't create file. Because the maximum number

of files allowed in the system is exceeded.

open_DBF
target file type DBF

purpose Open a DBF file and get the file handle of the file for further processing.

syntax int open_DBF(char* filename);
char* filename; file name of file to be opened

example call if (fd = open_DBF("data1") > 0) send_lcds("data1 opened!\n");

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-30

description The open_DBF function opens a DBF file specified by filename and gets
the file handle of the file. A file handle is a positive integer (excludes 0)
used to identify the file for subsequent file manipulations on the file. The
open_DBF function will also open all the index (key) files associated to
the DBF file being opened simultaneously. If filename exceeds 8
characters, it will be truncated to 8 characters long. After the DBF file is
opened, the index pointers of all the associated index (key) files point to
the beginning of the respective index.

returns If open_DBF successfully opens the DBF file, it returns the file handle of
the file being opened. In case of error, open_DBF will return an integer
value of -1 and an error code is set to the global variable error_code to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
1 filename is a NULL string.
2 File specified by filename does not exist.
4 File specified by filename is not a DBF file.
5 File specified by filename is already opened.

read
target file type DAT

purpose Read a specified number of bytes from a DAT file.

syntax int read(int fd, char* buffer, unsigned count);
int fd; file handle of the target DAT file
char* buffer; pointer to array of characters where the read data

will be placed
unsigned count;number of bytes to be read

example call if (bytes_read = read(fd, buffer,80) == -1)
 send_lcds("read error!\n");

description The read function copies the number of bytes specified in the argument
count from the DAT file whose file handle is fd to the array of characters
buffer. Reading starts at the current position of the file pointer, which is
incremented accordingly when the operation is completed.

returns The read function returns the number of bytes actually read from the file.
In case of error, read returns an integer value of -1 and an error code is
set to the global variable error_code to indicate the error condition
encountered. Possible error codes and their interpretation are listed
below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.

comments Since read returns an signed integer, the return value should be converted
to unsigned int when reading more than 32,767 bytes of data from a file
or the return value will be negative. Because the number of bytes to be
read is specified in an unsigned integer argument, you could theoretically

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-31

read 65,535 bytes at a time. But 65,535 (or FFFFh) also means -1 in
signed representation, so when reading 65,535 bytes the return value
indicates an error. The practical maximum then is 65,534.

read_error_code
purpose Get the value of the global variable error_code.

syntax int read_error_code();

example call if (read_error_code() == 2) send_lcds("File not exist!\n");

description The read_error_code function gets the value of the global variable
error_code and returns the value to the calling program. The programmer
can use this function to get the error code of the file manipulation routine
previously called. However, the global variable error_code can be
directly accessed without making a call to this function.

returns The read_error_code function returns the value of the global variable
error_code.

readln
target file type DAT

purpose Read a line terminated by a null character from a DAT file.

syntax int readln(int fd, char* buffer, unsigned max_count);
int fd; file handle of the target DAT file
char* buffer; pointer to array of characters where the read

line will be placed
unsigned max_count; maximum number of bytes to be read before

null character encountered

example call readln(fd, buffer,80);

description The readln function reads a line from the DAT file whose file handle is fd
and stores the characters in the character array buffer. Characters are read
until end-of-file encountered, a null character (\0) encountered, or the
total number of characters read equals the number specified in
max_count. The readln function then returns the number of bytes actually
read from the file. The null character (\0) is also counted if read. If the
readln function completes its operation not because a null character is
read, there will be no null character stored in buffer. Reading starts at the
current position of the file pointer, which is incremented accordingly
when the operation is completed.

returns The readln function returns the number of bytes actually read from the
file (includes the null character if read). In case of error, readln returns an
integer value of -1 and an error code is set to the global variable
error_code to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-32

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.

comments Since readln returns an signed integer, the return value should be
converted to unsigned int when reading more than 32,767 bytes of data
from a file or the return value will be negative. Because the number of
bytes to be read is specified in an unsigned integer argument, you could
theoretically read 65,535 bytes at a time. But 65,535 (or FFFFh) also
means -1 in signed representation, so when reading 65,535 bytes the
return value indicates an error. The practical maximum then is 65,534.
The argument max_count is usually set to a value which equals the size of
the character array buffer to avoid string overflow.

cautions Under some situations (end-of-file encountered or max_count reached),
there might not be a null character exist in buffer.

rebuild_index
target file type DBF

purpose Rebuild an IDX file of a DBF file.

syntax int rebuild_index(int DBF_fd, int key_number, int preference_index,
int key_offset, int key_len);

int DBF_fd; file handle of a DBF file which the target
index file associated to

int key_number; key number of the index file to be created
int preference_index; key number of the preference index file, see

description below
int key_offset; the byte offset address in member where the

key value begins
int key_len; the length (size of) of key value for the index

example call rebuild_index(DBF_fd,1,0,10);

description The rebuild_index function rebuilds or creates an IDX file specified by
the argument key_number which is associated to a DBF file whose file
handle is DBF_fd. If the index file specified by key_number exists, the
rebuild_index function will first delete it. If the index does not exist,
rebuild_index will directly create and rebuild the index. The key value
field for the index is specified by the argument key_offset and key_len.
The argument key_offset specifies the byte offset address where the key
value in a member begins. And key_len specifies the length of the key
value. The key field defined by key_offset and key_len should be within
the member as defined by member_len in create_DBF function. That is,
key_offset plus key_len should not greater than member_len.

The argument preference_index specifies an index file from which the
rebuild_index function takes as the input sequence for building index.
This function is quite useful when generating reports. For instance, if a
report is to be generated by the sequence of date, department, and ID
number, this is easily done by first rebuilds the ID number index and then

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-33

rebuilds the department index with ID number as the preference index,
and finally rebuilds the date index with department index as the
preference index. The resulting member sequence in the date index will
be in date, department, and ID number. The preference_index has no
effect on the following added members. It takes effect only when
rebuilding index. When there is no preferred index desired,
preference_index should have the value of 0. The preferred sequence will
be the original member sequence in the DBF file so done.

returns If rebuild_index successfully creates / rebuilds an IDX file, it returns an
integer value of 0. In case of error, rebuild_index will return an integer
value of -1 and an error code is set to the global variable error_code to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DBF file.
 6 Can't create file. Because the maximum number of files

allowed in the system is exceeded.
 8 DBF_fd is not a file handle of a previously opened file.
 9 Illegal value in argument key_offset,and/or key_len.
10 No more free file space for rebuilding index.
11 Illegal value in argument key_number.
18 Illegal value in argument preference_index.

remove
target file type DAT DBF

purpose Delete file.

syntax int remove(char* filename);
char* filename; file name of file to be deleted

example call if (remove("data1") == 0) send_lcds("data1 deleted!\n");

description Delete the file specified by filename. If filename exceeds 8 characters, it
will be truncated to 8 characters long. If the file to be deleted is a DBF
file, the DBF file and all the index (key) files associated to it will be
deleted altogether.

returns If remove deletes the file successfully, it returns an integer value of 0. In
case of error, remove will return an integer value of -1 and an error code
is set to the global variable error_code to indicate the error condition
encountered. Possible error codes and their interpretations are listed
below.

Error Code Interpretation
1 filename is a NULL string.
2 File specified by filename does not exist.

remove_index
target file type DBF

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-34

purpose Delete an index file.

syntax int remove_index(int DBF_fd, int key_number);
int DBF_fd; file handle of a DBF file which the target index

file associated to
int key_number;key number of the target index file

example call if (remove_index(DBF_fd, 1) == 0) send_lcds("index removed!\n");

description The remove_index function deletes the index file specified in the
argument key_number which is associated to a DBF file whose file handle
is DBF_fd.

returns The remove_index function returns an integer value of 0 if it successfully
deletes the index file. In case of error, remove_index returns an integer
value of -1 and an error code is set to the global variable error_code to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
 4 File specified by fd is not a DBF file.
 8 fd is not a file handle of a previously opened file.
11 Index file specified by key_number does not exist.

rename
target file type DAT DBF

purpose Change file name of an existing file.

syntax int rename(char* old_filename, char* new_filename);
char* old_filename; file name of file to be renamed
char* new_filename; new file name desired

example call if (rename("data1", "text1") == 0) send_lcds("data1 renamed!\n");

description Change the file name of the file specified by old_filename to
new_filename. If either old_filename or new_filename exceeds 8
characters, it will be truncated to 8 characters long. If the file specified by
old_filename is a DBF file, the file name of the DBF file and all the index
(key) files associated to it will be changed to new_filename altogether.

returns If rename successfully changes the file name, it returns an integer value of
0. In case of error, rename will return an integer value of -and an error
code is set to the global variable error_code to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
1 Either old_filename or new_filename is a NULL

string.
2 File specified by old_filename does not exist.
3 A file with file name new_filename already exists.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-35

tell
target file type DAT

purpose Get file pointer position of a DAT file.

syntax long tell(int fd);
int fd; file handle of the target DAT file

example call current_position = tell(fd);

description The tell function returns the current file pointer position of the DAT file
whose file handle is specified in the argument fd. The file pointer position
is expressed in number of bytes from the beginning of file. For instance,
if the file pointer points to the beginning of file, the file pointer position
will be 0L.

returns The long integer value returned by tell is the current file pointer position
in file. In case of error, tell returns a long value of -1L and an error code
is set to the global variable error_code to indicate the error condition
encountered. Possible error codes and their interpretation are listed
below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.

tell_DBF
target file type IDX

purpose Get index pointer position of an IDX file.

syntax long tell_DBF(int DBF_fd, int key_number);
int DBF_fd; file handle of the target DAT file
int key_number;key number of the target index file

example call rank_number = tell_DBF(DBF_fd, 1);

description The tell_DBF function returns the current index pointer position of the
IDX file which is specified in the argument key_number. The IDX file is
associated to a DBF file whose file handle is specified in the argument
DBF_fd. The index pointer position is expressed in rank number in the
IDX file. For instance, if the index pointer points to the first index, the
index pointer position will be 1L.

returns The long integer value returned by tell_DBF is the current index pointer
position in ranks in file. In case of error, tell_DBF returns a long value of
-1L and an error code is set to the global variable error_code to indicate
the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DAT file.
 8 DBF_fd is not a file handle of a previously

opened file.
11 Index file specified by key_number does not exist.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-36

write
target file type DAT

purpose Write a specified number of bytes to a DAT file.

syntax int write(int fd, char* buffer, unsigned count);
int fd; file handle of the target DAT file
char* buffer; pointer to array of characters representing data to be written
unsigned count;number of bytes to be written

example call write(fd, data_buffer, 1024);

description The write function writes the number of bytes specified in the argument
count from the character array buffer to a DAT file whose file handle is
fd. Writing of data starts at the current position of the file pointer, which
is incremented accordingly when the operation is completed. If the end-
of-file condition is encountered during the operation, the file will be
extended automatically to complete the operation.

returns The write function returns the number of bytes actually written to the file.
In case of error, write returns an integer value of -1 and an error code is
set to the global variable error_code to indicate the error condition
encountered. Possible error codes and their interpretation are listed
below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.
10 No more free file space for file extension.

comments Since write returns an signed integer, the return value should be
converted to unsigned int when writing more than 32,767 bytes of data to
a file or the return value will be negative. Because the number of bytes to
be written is specified in an unsigned integer argument, you could
theoretically write 65,535 bytes at a time. But 65,535 (or FFFFh) also
means -1 in signed representation, so when writing 65,535 bytes the
return value indicates an error. The practical maximum then is 65,534.

writeln
target file type DAT

purpose Write a line terminated by a null character (\0) to a DAT file.

syntax int writeln(int fd, char* buffer);
int fd; file handle of the target DAT file
char* buffer; pointer to array of characters representing data to be written

example call writeln(fd, data_buffer);

description The writeln function writes a line terminated by a null character from the
character array buffer to a DAT file whose file handle is fd. Characters
are written to the file until a null character (\0) is encountered. The null
character is also written to the file. Writing of data starts at the current
position of the file pointer, which is incremented accordingly when the

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-37

operation is completed. If the end-of-file condition is encountered during
the operation, the file will be extended automatically to complete the
operation.

returns The writeln function returns the number of bytes actually written to the
file (includes the null character). In case of error, writeln returns an
integer value of -1 and an error code is set to the global variable
error_code to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened file.
 9 no null character found in buffer
10 No more free file space for file extension.

comments Since writeln returns an signed integer, the return value should be
converted to unsigned int when writing more than 32,767 bytes of data to
a file or the return value will be negative. You could theoretically write
65,535 bytes at a time. But 65,535 (or FFFFh) also means -1 in signed
representation, so when writing 65,535 bytes the return value indicates an
error.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-38

5.6 Digital Input / Output
This section describes the digital Input / Output manipulation routines. Number of digital
input/output provided varies from machine to machine.

Machine Digital Input Digital Output Photo-Isolated
201 2 2 No
510 2 2 Yes
610 2 2 Yes

get_din
purpose Read digital Input.

syntax int get_din(int di);
int di; /* digital input number from 0, depends on machine */

example call if (get_di(0)) send_lcds(DI0 is ON!\n");

returns 1, if photo-coupler is turned on, that is current flows through the LED.
else 0

set_do
purpose Set the digital output

syntax void set_do(int do, int mode, int duration);
int do; /* digital output number starts from 0 */
int mode; /* output mode */
int duration; /* duration */

example call set_io(1,0,10); /* on digital output for 1 second then off */

description The set_do sets the digital output points specified by do.
The duration specified in the argument duration is in units of 0.1 second.
That is, if a duration of 1 second is desired, a value of 10 should be
assigned to the argument duration. A value of 0 in the argument duration
will keep the I/O stay in the specific state indefinitely.

There are 3 possible output modes can be assigned to the argument
output_mode. Their values and interpretation are listed below.

output mode interpretation
0 Turn on the DO immediately for specific duration

and then go back off.
1 Turn off the DO immediately for specific duration

and then go back on.
2 Turn on the DO for exactly the specific duration

and then go back off.
3 Turn off the DO for exactly the specific duration

and then go back on.
4 Flash the I/O with a specific period indefinitely. The

flashing period equals to 2 * duration.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-39

Note that for mode 0 and 1, the activation is executed at once but the
overall duration is longer for at most 0.1 second. Whereas the mode 2
and 3, the activation is not executed at once, but the activation period is
exactly (duration X 0.1) seconds.

returns none

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-40

5.7 LED
Number of LEDs provided depends on the target machine as follows,

• 201
Name Number

good read for reader 1 0
good read for reader 2 1

These 2 LED outputs are directly connected to the corresponding reader ports.
Also they are ORed to the built-in GoodRead LED. That is, if one or both of
them are turned on, the on-board good read LED will be turned on too.

• 510
Name Number

good read for reader 1 0
good read for reader 2 1
ready 3
good read 4
battery low 7
F1 9
F2 6
F3 5
F4 2
shift 8

• 610 : to be defined

set_led
purpose Set LED

syntax int set_led(int led, int mode, int duration);
int led; /* number of LED to be accessed */
int mode; /* activation mode */
duration; /* duration in unit of 0.1 seconds */

example call set_led(3, 2, 10);/* set ready LED to flash for each 1 second */

description 3 modes are supported,
0 : off for (duration X 0.1) seconds then on
1 : on for (duration X 0.1) seconds then off
2 : flash, on then off each for (duration X 0.1) seconds then repeat

returns none

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-41

5.8 Membrane Keypad
The built-in membrane keypad is available for 510 and 610 but not 201. A scanning
circuitry of 8 by 8 matrix is utilized regardless of the keypad used. The background
routine constantly scans the membrane keypad and if any key was pressed, stored this
scan code into a FIFO (first-in first-out) 32 bytes buffer. However, if the buffer is full,
the keys followed will be ignored. The C program must constantly checks to see if any
code is available in the buffer.

The scanning routine is capable of handling single-key strokes only, combination keys are
not supported. That is, if more than one key are pressed at the same time, only the key
with smallest scancode is recognized. However, repeat function is supported. To be
human friendly, after the key was pressed for 1 seconds, repeat starts with a 0.5 seconds
period.

The scan codes for 510 standard keypad are listed below,

Key Code Key Code Key Code Key Code
F1 1b 0 11 4 08 8 02
F2 19 1 12 5 09 9 03
F3 1a 2 13 6 0a shift 0b
F4 1c 3 14 7 01 enter 04

The scan code is expressed in hex-decimal form.

clr_memkb
purpose Clear the keyboard buffer of the membrane keyboard.

syntax void clr_memkb();

example call clr_memkb();

description The clr_memkb function clears the keyboard buffer of the membrane
keyboard. This function is automatically called by the system program
upon power up

returns The clr_memkb function has no return values.

mem_kbhit
purpose Check whether the keyboard buffer of the membrane keyboard is empty.

syntax int mem_kbhit();

example call for (;!mem_kbhit();); /* wait till key pressed */

description The mem_kbhit function checks if there is any character waiting to be
read from the keyboard buffer of the membrane keyboard.

returns If the keyboard buffer of the membrane keyboard is empty, the
mem_kbhit function returns an integer value of 0, 1 if not.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-42

mem_getchar
purpose Get one key stroke from the keyboard buffer of the membrane keyboard.

syntax char mem_getchar();

example call c = mem_getchar();
if (c >0) printf_us("Key %d pressed", c);
else printf_us("No key pressed");

description The mem_getchar function reads one key stroke from the keyboard buffer
of the membrane keyboard and then removes the key stroke from the
keyboard buffer.

returns The mem_getchar function returns the key stroke read from the keyboard
buffer. If the keyboard buffer is empty, a null character (0x00) is
returned. The key stroke returned is the scan code of the key being
pressed. The possible values of the key strokes returned are from 1 to 64
representing each key on the membrane keyboard. The programmer
might take some extra effort to translate the key strokes to meaningful
characters.

scan_multi_key
purpose Get multiple key combinations from the membrane keyboard.

syntax unsigned long scan_multi_key();

example call unsigned long keycode;

keycode=scan_multi_key();
printf_us("Keys %ld pressed", keycode);

description Unlike the ext_getchar, this routine disables the background scanning
routines and directly scans the keypad. At the end, an unsigned long
integer is returned to show up to 4 keys that are pressed at the same time.
These scancodes are stored in ascending order (higher byte with smaller
scan codes). This is used to get the special power-on code for diagnostic
and so on and should not be used for normal use.

returns An unsigned long integer is returned and each byte represents a scan
code. That is, up to 4 keys can be read simultaneously.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-43

5.9 External AT Keyboard

The external AT keyboard is supported by 510 and 201 for handy keyboard entry and is
processed as following.

• The keys which have a corresponding ASCII code value are stored with the
ASCII code value when they are pressed.

• The Caps Lock key and the Shift keys are recognized and are automatically
processed.

• The Num Lock is always set to the on state.
• The Ctrl key and the Alt key are not supported.
• The function keys (F1 to F12) are mapped to the value 0x80 to 0x8b respectively.
• Up, down, right, and left keys are stored as 0x8c, 0x8d, 0x8e, and 0x8f

respectively.
• Other keys that are not mentioned above are not supported.

Scancodes are sent from the keyboard to the machine and stored into a 32-byte FIFO
(first-in first-out) buffer. If this buffer is full, keys followed will be ignored. External
keyboard handling routines process the code translation (from scan code to ASCII) and
shift, capslock and so on and must be called periodically.

en_extkb
purpose Enable external AT keyboard

syntax void en_extkb();

example call en_extkb();

description The en_extkb function enables the external AT keyboard. The external
keyboard is disabled upon power on. This routine must be called prior to
use of the external keyboard. It starts all related background routines and
also clears the keycode buffer.

returns none

dis_extkb
purpose Disable external AT keyboard connection

syntax void dis_extkb();

example call dis_extkb();

description The dis_extkb function disables the external AT keyboard. All related
background routines are stopped.

returns none

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-44

clr_extkb
purpose Clear the keyboard buffer of the external AT keyboard.

syntax void clr_extkb();

example call clr_extkb();

description The clr_extkb function clears the keyboard buffer of the external AT
keyboard. This function is automatically called upon power on.

returns The clr_extkb function has no return values.

ext_getchar
purpose Get one character from the keyboard buffer of the external AT keyboard.

syntax char ext_getchar();

example call c = ext_getchar();

description The ext_getchar function reads one character from the keyboard buffer of
the external AT keyboard and then removes the character from the
keyboard buffer.

returns The ext_getchar function returns the character read from the keyboard
buffer. If the keyboard buffer is empty, a null character (0x00) is
returned.

ext_kbhit
purpose Check whether the keyboard buffer of the external AT keyboard is

empty.

syntax int ext_kbhit();

example call for (;!ext_kbhit();); /* wait till key pressed */

description The ext_kbhit function checks whether there is any character waiting to be
read in the keyboard buffer of the external AT keyboard.

returns If the keyboard buffer of the external AT keyboard is empty, the ext_kbhit
function returns an integer value of 0, 1 if not.

capital_lock
purpose set external keyboard capslock status

syntax void capital_lock(int capslock);

int capslock; /* capslock to be set , 1/0 to turn on/off */

example call capital_lock(1); /* on capital lock */

description This routine forces to turn on or off the capslock and is usually used
during system initialization.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-45

returns none

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-46

5.10 LCD
This section describes the output routines and the control routines concerning the LCD
display. Depending on the target machine, up to 4 types of LCD displays are supported,
20 X 2, 20 X 4, 40 X 2 and 40 X 4. A constant named LCD_TYPE must be defined in
the C main program to specify the LCD display utilized.

• const int LCD_TYPE = 1; /* 20 X 2 */
• const int LCD_TYPE = 2; /* 20 X 4 */
• const int LCD_TYPE = 3; /* 40 X 2 */
• const int LCD_TYPE = 4; /* 40 X 4 */

A coordinate system is used in the cursor movement routines to determine the position
of the cursor. The coordinate of the top left character position is assigned (0,0) and the
bottom right character is assigned with coordinate (column-1, line-1), e.g. (19, 1), (19,
3) and so on. If the cursor is not in the visible area on the LCD display, the cursor is said
to fall off the LCD scope. To keep these routines function properly, the LCD type must
be correctly specified.

5.10.1 Scrolling

If the cursor falls off the LCD scope when sending outputs to the LCD by use of the
scrolling output routines, a new line character will be automatically inserted which will
scroll up the current line (if necessary) and place the cursor to the first character position
of the next line. If the unscrolling routines are used instead, no extra output formatting
will be made and the characters fall off the LCD scope will be ignored.

5.10.2 Customized Fonts

Up to 8 fonts can be customized into LCD display controller and is mapped to hex code 10 to
17. For detail, please refer to set_lcd_cg().

5.10.3 Special Characters

The back space character (0x08), the new line (line feed) character (0x0a), and the return
character (0x0d) are processed as following.

• Back Space : The cursor is backed up one character position and the character at
the new cursor position is replaced by a space character.

• New Line : The current line will be scrolled up (if necessary) and the cursor will
be placed at the first character position of the next line.

• Return : The characters from the current cursor position to the end of the line
will be cleared (filled with spaces) and the cursor will be placed at the first
character position of the line.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-47

clr_scr
purpose Clear LCD display.

syntax int clr_scr();

example call clr_scr();

description The clr_scr function clears the LCD display and places the cursor at the
first column of the first line, that is (0,0) as expressed with the coordinate
system.

returns Normally the clr_scr function will return an integer value of 1 when
operation completes. In case of LCD fault, 0 is returned to indicate error.

cursor_status
purpose Get current cursor status.

syntax int cursor_status();

example call if (cursor_status()==0) send_lcds("Cursor Off");

description The cursor_status function check if the cursor is visible or not.

returns The cursor_status function returns an integer of 1 if the cursor is visible
(turned on), 0 if not.

lcd_backlit
purpose Set LCD backlight

syntax void lcd_backlit(intensity);

unsigned char intensity; /* intensity from 0 to 3 */

example call lcd_backlit(3); /* set brightest LCD backlight */

description The lcd_backlit fine tunes the LCD backlight intensity from fully turned
on (3) to fully off (0).

returns none.

gotoxy
purpose Move cursor to new position.

syntax int gotoxy(int x_position, int y_position);
int x_position; x coordinate of the new cursor position desired
int y_position; y coordinate of the new cursor position desired

example call gotoxy(10,0); /* move to the 11th column of the first line */

description The gotoxy function moves the cursor to a new position whose coordinate
is specified in the argument x_position and y_position.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-48

returns Normally the gotoxy function will return an integer value of 1 when
operation completes. In case of LCD fault, 0 is returned to indicate error.

printf_s
purpose Write character strings and values of C variables in a specified format

with scrolling to the LCD display.

syntax int printf_s(char* format,);
char* format; character string that describes the format to be used

variable number of arguments whose values are being
printed on the LCD display

example call printf_s("ID : %s", id_buffer);

description The printf_s function accepts a variable number of arguments and prints
them to the LCD display. The value of each argument is formatted
according to the codes embedded in the format specification format. The
printf_s function will automatically insert a new line character, if the
cursor falls off the scope of LCD during operation. That is, the printf_s
function will perform scrolling when necessary.

To print values of C variables, a format specification must be embedded
in format for each variable to be printed. The format specification for
each variable has the following form :

%[flags][width].[precision][size][type]

Field Explanation
% (required) Indicates the beginning of a format

specification. Use %% to print a percentage sign.
flags (optional) One or more of the '-', '+', '#' characters or a blank space

specifies justification, and the appearance of plus / minus signs in
the values printed (see table below).

width (optional) A number that indicates how many characters,
at a minimum, must be used to print the value

precision (optional) A number that specifies how many characters,
at maximum, can be used to print the value.
When printing integer variables, this is the
minimum number of digits used.

size (optional) A character that modifies the type field which
comes next. One of the characters 'h', 'l', 'L' can
appears in this field to differentiate between
short and long integers. 'h' is for short integers,
and 'l' or 'L' for long integers.

type (required) A letter that indicates the type of variable being
printed (see table below)

Flags Meaning
- Left justify output value. Default is right justification.
+ If the output value is a numerical one, print a '+' or '-'

character according to the sign of the value. A '-' character
is always printed for a negative value no matter this flag is
specified or not.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-49

blank Positive numerical values are prefixed with blank spaces.
This flag is ignored if the + flag also appears.

When used in printing variables of type o, x, or X,
 none zero
output values are prefixed with 0, 0x, or 0X, respectively.

Type Expected Input
c Single character.
d Signed decimal integer.
i Signed decimal integer.
o Octal digits without sign.
u Unsigned decimal integer.
x Hexadecimal digits using lower case letter.
X Hexadecimal digits using upper case letter.
s A null terminated character string.

returns The printf_s function returns the number characters sent to the LCD
display (not including the scrolling new line characters inserted by
printf_s).

printf_us
purpose Write character strings and values of C variables in a specified format

without scrolling to the LCD display.

syntax int printf_us(char* format,);
char* format; character string that describes the format to be used

variable number of arguments whose values are being
printed on the LCD display

example call printf_us("ID : %s", id_buffer);

description The printf_us function performs the same task as printf_s except that
printf_us does not perform automatic scrolling if the cursor falls off the
scope of LCD during operation.

returns The printf_us function returns the number characters sent to the LCD
display.

send_lcdc
purpose Display a character on the LCD display with scrolling.

syntax int send_lcdc(char c);
char c; character sent to the LCD display

example call send_lcdc('A');

description The send_lcdc function sends the character specified in the argument c to
the LCD display at the current cursor position and moves the cursor
accordingly. If the cursor falls off the LCD scope after the operation, a
new line character will be automatically sent to the LCD display by the
send_lcdc function.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-50

returns Normally the send_lcdc function will return an integer value of 1 when
operation completes. In case of LCD fault, 0 is returned to indicate error.

send_lcds
purpose Display a string on the LCD display with scrolling.

syntax char send_lcds(char* string);
char* string; string to be displayed

example call send_lcds("Password : ");

description The send_lcds function sends a character string whose address is
specified in the argument string to the LCD display starting from the
current cursor position. The cursor is moved accordingly as each
character of string is sent to the LCD display. The operation continues
until a terminating null character is encountered. If the cursor falls off the
scope of LCD display duration the operation, a new line character will be
automatically inserted.

returns Normally the send_lcds function will return an integer value of 1 when
operation completes. In case of LCD fault, 0 is returned to indicate error.

send_lcduc
purpose Display a character on the LCD display without scrolling.

syntax char send_lcduc(char c);
char c; character to be displayed

example call send_lcduc('A');

description The send_lcduc function sends a character specified in the argument c to
the LCD display at the current cursor position and moves the cursor
accordingly. No new line characters will be inserted should the cursor
falls off the scope of the LCD display after the send_lcduc function sends
the character c to the LCD display.

returns Normally the send_lcduc function will return an integer value of 1 when
operation completes. In case of LCD fault, 0 is returned to indicate error.

send_lcdus
purpose Display a string on the LCD display without scrolling.

syntax char send_lcdus(char* string);
char* string; string to be displayed

example call send_lcdus("Password : ");

description The send_lcdus function sends a character string whose address is
specified in the argument string to the LCD display starting from the
current cursor position. The cursor is moved accordingly as each

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-51

character of string is sent to the LCD display. The operation continues
until a terminating null character is encountered. If the cursor falls off the
scope of LCD display duration the operation, no new line character will
be automatically inserted as opposed to the send_lcds function.

returns Normally the send_lcdus function will return an integer value of 1 when
operation completes. In case of LCD fault, 0 is returned to indicate error.

set_cursor
purpose Turn on or off the cursor of the LCD display.

syntax void set_cursor(int status);
int status; integer representing cursor status to be set

example call set_cursor(0); /* invisible the cursor */

description The set_cursor function displays or hides the cursor of the LCD display
according to the value of status specified. If status equals 1, the cursor
will be blinking on the LCD display to show the current cursor position.
If status equals 0, the cursor will be invisible.

returns The set_cursor function has no return values.

wherex
purpose Get x-coordinate of the cursor location.

syntax int wherex();

example call x_position = wherex();

description The wherex function determines the current x-coordinate location of the
cursor.

returns The wherex function returns the x-coordinate of the cursor location.

wherexy
purpose Get x-coordinate and y-coordinate of the cursor location

syntax int wherexy(int* column, int* row);
int* column; pointer to integer where x-coordinate is stored
int* row; pointer to integer where y-coordinate is stored

example call wherexy(&x_position, &y_position);

description The wherexy function copies the value of x-coordinate and y-coordinate
of the cursor location to the variables whose address is specified in the
arguments column and row.

returns Normally the wherexy function returns an integer value of 1. In case LCD
malfunctions, the return value will be 0 to indicate error.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-52

wherey
purpose Get y-coordinate of the cursor location.

syntax int wherey();

example call y_position = wherey();

description The wherey function determines the current y-coordinate location of the
cursor.

returns The wherey function returns the y-coordinate of the cursor location.

set_lcd_cg
purpose Set customized fonts

syntax void set_lcd_cg(char *font);
char *font;/* 64 bytes bit patterns */

example call char my_font = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
..........

};
send_lcdc(0x10);
actual image shown on the display

Data D7 D6 D5 D4 D3 D2 D1 D0
Byte 1 12 O O
Byte 2 34 O O O
Byte 3 56 O O O O
Byte 4 78 O O O O
Byte 5 9a O O O O
Byte 5 bc O O O O O
Byte 6 de O O O O O O
Byte 7 f0 O O O O

description This routine is used to customize up to 8 special fonts for application use.

returns none

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-53

5.11 Power
This section describes the power management functions for 510. The read_batt function
is used to monitor the voltage level of the main battery and the shut_down function is
used to halt the operation of the station.

5.11.1 Main Battery

If the optional main battery is installed, the machine can still be operational by using the
power of the main battery when there is no external power supplied. The battery life of
the main battery may be shortened or even damaged if the battery was deeply drained.
So it is important to constantly monitor the voltage level of the main battery and shut
down the system before the voltage level falls too low. It is recommend that the battery
low LED be lighted when the voltage level falls below 7.7 volts as a warning, and the
system be shut down when the voltage level falls below 7.0 volts.

read_batt
purpose Get voltage level of the main battery.

syntax unsigned read_batt();

example call if (read_batt() < 7000) set_led(BATTERY_LOW, 2, 1);

/* if battery low, flash battery low LED */

description The read_batt function reads the voltage level of the main battery in units
of mV. If external power is supplied, the read value should be 10000,
that is 10 Volts as it is limited by ADC protection circuitry.

returns The read_batt function returns the voltage level of the main battery in
units of mV (mili-volt).

shut_down
purpose Shut down system power.

syntax void shut_down();

example call shut_down();

description The shut_down function turns off the power of the machine immediately.
To re-operate the machine, the power switch must be turned off and on
again.

returns The shut_down function has no return value.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-54

5.12 RS232
This section describes the RS232 manipulation routines. There are totally 3 RS232 ports
provided , namely COM1 to COM3 and are accessed via the same methods regardless of
their hardware deviations. That is, on the software point, they are all the same. Besides
the data signals (transmit & receive), 2 handshake signals (RTS & CTS) are also
provided for data flow control. Features provided are described in detail below,

5.12.1 Parameters

• Baud rate : One out of 8 baud rates can be selected (38400, 19200, 9600, 4800,
2400, 1200, 600 and 300)

• Data Bits : 7 or 8
• Parity : Even, Odd or none
• Stop bit : 1

5.12.2 Receive Buffer

A 256 bytes FIFO buffer is allocated for each port. The data successfully received is
stored into this buffer sequentially (if any error such as framing, parity error and so on
occurs, the data is simply discarded). However if the buffer is full, the data followed will
be discarded and an overrun flag is set to indicate this error.

5.12.3 Transmit Buffer

The system does not allocate any transmit buffer, it simply records the pointer to the
string to be sent. The transmission stops when a null (0x00) character was encountered.
The application program must allocate its own transmit buffer and not to modify it
during transmission.

5.12.4 Flow Control

To avoid data loss, 3 kinds of flow control are supported and is done by background
routines.

1) None : no flow control is performed

2) CTS : RTS and CTS signals are used for flow control.

• Transmission : The transmission is allowed only when CTS signal is at the
active level (mark). If the CTS is dropped and later become active again,
the transmission is automatically resumed by background routines.
However, due to the UART design (on-chip temporary transmission
buffer), up to 2 characters might be sent after the CTS was dropped.

• Receive : The RTS signal is used to indicate that the receiving buffer is or
is going to be full and instruct the transmitting side to halt transmission. If

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-55

there are less than 5 character spaces available in the receiving buffer, the
RTS is dropped. Then the RTS is activated again when there are no less
than 10 character spaces available in the receiving buffer. If there are
sufficient spaces in the buffer, the received data is stored even when RTS is
dropped.

3) XON/XOFF : instead of RTS/CTS signals, 2 special characters are used for
flow control. That is, XON (hex 11) and XOFF (hex 13). XON is used to
enable transmission while XOFF to disable transmission.

• Transmission : when the port is opened, the transmission is enabled. Then
every character received is examined to see if it is a normal data or flow
control codes. If XOFF is received, transmission is halted. It is resumed
later when a XON is received. Just like RTS/CTS control, up to 2
characters might be sent after the XOFF was received.

• Receive : The received characters are examined to see if it is normal data
(stored into receive buffer) or flow control codes (set/reset transmission
flag but not stored). If there are less than 5 character spaces available in the
receiving buffer, the XOFF is sent. Then the XON is sent when there are
no less than 10 character spaces available in the receiving buffer. If there
are sufficient spaces in the buffer, the received data is stored even when in
XOFF state. Note that if receiving/transmission are concurrently in
operation, XON/XOFF control codes might be inserted into normal
transmit data string. In using this method, make sure the respective side
features the same control methodology or dead lock might happen.

Regardless of the flow control methodology selected, the RTS is activated when the port
is opened and dropped when the port is closed (the power on default status).

open_com
purpose Initialize and enable specified RS232 port

syntax void open_com(int port, int parameter);
int port; /* port to be opened, from 1 to 3 */
int parameter;/* port parameters as below */

D0-D2 baud rate 0 to 7 = 38400/19200/9600/4800
 /2400/1200/600/300

D3 data bits 0 : 7bits 1 : 8 bits
D4 parity enable 0 : disable 1 : enable
D5 even/odd 0 : odd 1 : even
D6 flow control 0 : disable 1 : enable
D7 flow control method 0 : CTS, 1 : XON/XOFF

example call open_com(1, 0x0a);
/* open com1 to 9600, 8 data bits, no parity and no handshake */

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-56

description The open_com function initializes the specified RS-232 port. It clears the
receive buffer, stops any data transmission under going, reset the status of
the port, and set the RS-232 specification according to parameters set.

returns None

close_com
purpose Disable specified RS232 port

syntax void close_com(int port);
int port; /* port to be closed, from 1 to 3 */

example call close_com(2); /* close com2 */

description The close_com disables the RS232 port specified.

returns None

read_com
purpose Read 1 byte from the RS232 receive buffer

syntax int read_com(int port, char *c);
int port; /* port to be read, from 1 to 3 */
char *c; /* pointer to character returned */

example call char c;
i=read_com(1, c);
if (i) printf_us("char %c received from COM1", *c);

description This routine is used to read one byte from the receive buffer and then
remove it from the buffer. However, if the buffer is empty, no action is
taken and 0 is returned.

returns 1, available or 0 if buffer is empty

write_com
purpose Send a string out through RS232 port

syntax void write_com(int port, char *s);
int port; /* port to be read, from 1 to 3 */
char *s; /* string to be sent */

example call char s[] = { "Hello\n" };
write_com(1, s);/* send String "Hello\n" through COM1 */

description This routine is used to send a string through RS232 ports. If any prior
transmission is still in process, it is terminated then the current
transmission resumes. The character string is transmitted one by one until
a NULL character is met. A null string can be used to terminate prior
transmission.

returns None

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-57

clear_com
purpose Clear receive buffer

syntax void clear_com(int port);
int port; /* port to be cleared, from 1 to 3 */

example call clear_com(1);/* clear COM1 receive buffer */

description This routine is used to clear all data stored in the receive buffer. This can
be used to avoid mis-interpretation when overrun or other error occurred.

returns none

com_eot
purpose See if any transmission in process (End Of Transmission)

syntax int com_eot(int port);
int port; /* port to be accessed, from 1 to 3 */

example call while (com_eot(1) == 0x00); /* wait till prior transmission completed */
write_com(1, "NEXT STRING");

description This routine is used to check if prior transmission is still in process or not.

returns 1, prior transmission still in course
0, transmission completed

com_overrun
purpose See if overrun error occurred

syntax int com_overrun(int port);
int port; /* port to be accessed, from 1 to 3 */

example call if (overrun(1) > 0) clear_com(1);
/* if overrun, data stored in the buffer is not complete, clear them */

description This routine is used to see if overrun met. The overrun flag is
automatically cleared after examined.

returns 1, overrun error met
0, OK

com_rts
purpose Set RTS signal

syntax void com_rts(int port, int i);
int port; /* port to be accessed, from 1 to 3 */
int i; /* RTS state, 1/0, mark/space */

example call com_rts(1, 1);/* set COM1 RTS to mark */

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-58

description This routine is used to control the RTS signal. It works even when the
CTS flow control is selected. However, RTS might be changed by the
background routine according to receiving buffer status. It is strongly
recommended not to use this routine if CTS control is utilized.

returns none

com_cts
purpose Get CTS level

syntax int com_cts(int port);
int port; /* port to be accessed, from 1 to 3 */

example call if (com_cts(1) == 0) printf_us("COM1 CTS is space");
else printf_us("COM1 CTS is mark");

description This routine is used to check current CTS level.

returns 1, if CTS is in mark state
0, if CTS is in space state

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-59

5.13 RS485
An RS485 communication port is equipped for multi-station communications. It utilizes
the same UART port as RS232 COM2. Only one of them can be enabled at a time. That
is, if one of them is enabled, another is disabled.

5.13.1 Parameter

The communication parameters are fixed as follows,

• Baud Rate : 76.8 K bps
• Data Bit : 9
• Parity : None

To avoid collision and ensure data integrity, special communication protocol and flow
control is utilized and are described below,

5.13.2 Station ID

The RS485 is a multi-drop communication standard which allows up to 30 stations
(expandable by use of repeater) to be linked on the same net. Each station must be
assigned with an unique station ID for proper communication. This one-byte station ID
ranges from 1 to 255. Station ID 0 is reserved for broadcasting purpose only and can not
be assigned to any station.

5.13.3 Master/Slave

One and only one of the stations on the link is assigned to be the bus arbitrator (master),
while others are listeners (slaves). To avoid collision, the master is the only station that
can start a talk and the specified listener can respond to this action by sending an echo
back to the master. That is, a talk is always started by the master and ended with an echo
from the specified slave. To improve efficiency, echo is done by the interrupt routine.

5.13.4 Packet

Communication is done by transactions of packets. A packet is composed of several
characters and is the only meaningful communication unit. That is, a full packet must be
transmitted/received to be correctly parsed.

Processing of the packet has been done by background routines and is not really a
concern for the C programmer. The materials herein serves as reference only.

Compositions of a packet are listed and explained below,

DLSs..sK

where,
D : destination station ID

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-60

L : length of the packet in bytes
S : source station ID
s..s : string to be transferred
K : checksum

5.13.5 Master

• Polling

Since the communication always starts from the master side. It is the master's
responsibility to poll slave stations constantly to see if anything to be taken
care of or not. To do so, a null string was sent, that is, the (s..s) in the packet
is null. Whereas the slave station echoes (by background routine) back the
status word and the message string (if available)to indicate its current status.

Master send packet DLSK

where,
D = slave ID
S = master ID

Slave echoes packet DLSWWs..sK

where,
D = master ID
S = slave ID
WW=2 bytes status word
s..s = message if any

• Command/message
If a command or message is to be sent to a slave station. The slave always
echoes with status word only. That is if the (s..s) from the master side is not
null, it is treated as a command transaction and only status word is returned.

Master send packet DLSs.sK

where,
D = slave ID
s..s = command/message string
S = master ID

Slave echoes packet DLSWWK

where,
D = master ID
S = slave ID
WW=2 bytes status word

The echo from the slave at this time only indicates that the command/message
packet is successfully received. To make sure that the command/message is

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-61

correctly interpreted/processed, the master can then poll the slave station to
get the completion result from the slave. Note that if the destination from the
master is 0, it is a broadcasting command and is accepted by all slave stations.
However, no echo is done since this will cause data collision.

5.13.6 Slave

As the transaction all start from the master side. To improve efficiency, the slave side
echoes to the transaction immediately following receipt of a packet by background
routines (interrupt). That is, all supported routines for slave DO NOT initiate any
communication activities, it must wait till the master sends out a valid packet and then
echo. All these routines simply modify some internal flags and buffers.

5.13.7 Status Word

A 16-bit RS485 status word was declared by background routines. Bit 0 & 1 are
reserved for transaction use and is manipulated by background routines. Whereas others
are free to be defined for C program use. This word is initialized to 0 when RS485 port
is opened.

extern int RS485_STW;

• bit 0 : set to 1 once a complete packet is received and can be used to see if
this station is on-lined or not (granted by the master).

• bit 1 : set to 1 if bus contention is encountered. During transmission, the
rolled-back character is verified. If fault, the transmission is stopped at once
and this bit is set to 1 to indicate this error.

Other bits can be used to show current status, for example, (access control)

• bit 2 : successful ID scanned (to ask master station to verify this card)
• bit 3 : door lock status (locked or not)
• others depend on application need

Once this slave is polled by the master, the status word is returned. And if the bit 1 is set
to 1, the master can send another command to read this ID, process the ID. And then
send another command to instruct the slave if this is a valid ID or not (open door or not).

5.13.8 RS485 Processing

Unlike RS232 communication, special care must be taken in handling a multi-drop
communication like RS485. The recommended flow are as follows,

• Master polling

1) write_485(ID, ""); /* null string */
2) read_485();
3) if string echoed, check ID, if correct then OK, END, else fault, END

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-62

4) if time out then time out error, END
5) goto step 2 and repeat

• Master command

Being an arbitrator, it is the master's responsibility to ensure successful
transaction. That is, messy retry must be included in the procedure. However,
as the slave echoes during the interrupt routine, the recommended time out is
only 10-15 ms. Also, to improve performance, the master must try to poll
slaves as fast as it can which however overloads the master station. To
overcome this, the procedures described above are separated into many small
steps as can be seen in the sample program.

1) write_485(ID, command_string); /* non-null command string
*/

2) read_485();
3) if string echoed, check ID, if correct then go to step 6, else fault, END
4) if time out then time out error, END
5) go to step 2 and repeat
6) Poll slave to get result as the previous one

• Slave

1) if read_485(s) == 0 then END
2) parse command string s
3) prepare result write_485(result);

open_485
purpose Open RS485 communication port

syntax void open_485(int master, int ID);
int master; /* 1/0, master/slave station */
int ID; /* station ID from 1 to 255 */

example call open_485(0, 10); /* slave
station #10 */

description this routine enables RS485 port and set its station ID and communication
attribute (master/slave).

returns none

close_485
purpose Close RS485 communication port

syntax void close_485();

example call close_485(0, 10);

description this routine disables RS485 port.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-63

returns none

test_485
purpose Test RS485 circuitry

syntax int test_485();

example call if (test_485() >0) printf_us("RS485 OK");

description this routine takes use of the RS485 driver inherent roll-back to see if the
RS485 circuitry is working properly. It sends out all possible characters
and checks to see if the same characters received.

Note that the cable must be disconnected when using this routine.

returns 1, roll-back OK
0, fail

read_485
purpose Read RS485 packet received

syntax int read_485(char *s);
char *s; /* string pointer where received packet to be copied */

example call char s[50];
if (read_485(s) > 0) {

printf_us("String %s received", s+3);
}

description The background interrupt routines handle receiving of the RS485. That
is, to verify the ID (destination), length, checksum and so on. Upon
receipt of a successful packet, an internal flag is set and the whole packet
is stored in the receiving buffer. This flag disables further receiving
operation until the received packet is read by this routine (which in the
fact, clear this flag). The whole packet (except checksum) described
previously is copied to the string pointer (s). The source ID is also
returned and can be used to see if this is a broadcasting command or not.

returns if available, string length of the packet
0, not available

write_485 (for master)
purpose Send a string to slave station

syntax void write_485(int ID, char *s);
int ID; /* destination slave ID*/
char *s; /* string to be sent */

example call write_485(5, "READ"); /* send string "READ" to slave #5 */

description the routine is used by master station to send a string out to designated
slave station. The RS485 transmission starts immediately when this
routine is called.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-64

returns none

write_485 (for slave)
purpose Prepare echo string to master station

syntax void write_485(char *s);
char *s; /* string to be sent */

example call write_485("DONE"); /* echo string "DONE" when polled */

description Unlike master station, this routine does not initiate any transmission.
Instead, it copies the string to an internal buffer and sets a flag. Later,
when this station is polled, the stored string is sent back to the master.

This flag acts as follows,
• set, when this routine is called
• clear, on the following conditions,

1) continuously polled for 4 times, up to 3 retries allowed.
2) polled and then packet for other station is acknowledged,

job for me is completed
3) a non-null packet for this slave is received, new job for

me
returns none

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h> 5-65

5.14 Memory
Flash and SRAM manipulation routines are described in this section.

download
purpose Flash programming routine

syntax void download(int port);
int port; /* COM port to be used, from 1 to 3 */

example call open_com(1, 0x08); /* 38400, N, 8 */
download(1); /* download code from COM1 */

description The download is used to get the new program code from RS232 port and
then write them to the flash memory. The RS232 port baud rate, parity
and data bits are not set by this program and should be set prior call to
this routine. At the end, this routine jumps to the system start point and
the system will re-initialize again.

returns none

clone
purpose Program another machine

syntax int clone();

example call clone();

description This routine is used to update program codes of another machine and is a
complement of the function download(). It automatically searches which
RS232 port is connected and then duplicates its own code to the machine
attached. The RS232 port is fixed to 38400,n,8. For 210, all 3 RS232
ports (COM1 to COM3) are searched whereas for 510, as COM2 is fixed
to RS485 use, it is not tested.

returns 1, ok
-1, fail

init_free_memory
purpose Initialize file space.

syntax void init_free_memory();

example call init_free_memory();

description The init_free_memory function will first try to identify how many SRAMs
are installed, and then initialize the contents of the file space (total SRAM
installed excludes memory of system space and user space). The original
contents of the file space will be wiped out after this function is called.
Whenever the amount of the SRAM installed is changed, this function
must be called to recognize the changes.

Syntech Programmable Terminal Programmer's Guide

Syntech Library Routines : <synlib.h>5-66

returns This function has no return values.

test_memory
purpose SRAM read/write test routine

syntax int test_memory(char * saddr, long length, int value, int step);
char * saddr; SRAM start address to be tested
long length; size of the SRAM in words to be tested
int value; starting value to be filled
int step; increment of the value

example call if (test_memory(0x420000, 0x4000, 0x55, 0x03) != 0)
printf_us("SRAM test fail");

description This routine is used to test SRAM. The SRAM area to be tested were
filled with known values and then read back for verification on word
basis. Then the SRAM contents are restored. The first location was filled
with the value while the succeeding location was filled by adding the step
to the value of the preceding location.

returns 0 if test ok, -1 if fail

Syntech Programmable Terminal Programmer's Guide

Standard Library Routines 6-1

6. Standard Library Routines
The standard library routines supported as categorized and listed below,

6.1 Input and Output : <stdio.h>
• File Operations

Not supported, please use Syntech Library routines.

• Formatted Output
Only sprintf is supported, for formatted output to display, please refer to
Syntech Library "LCD".

• Formatted Input
Only sscanf is supported.

• Character Input and Output
Not supported, please refer to Syntech Library "External AT Keyboard" and
"Membrane Keypad"

• Direct Input and Output
Not supported.

6.2 Character Class Test : <ctype.h>
For each function, the argument is an int, whose value must be EOF or representable as
an unsigned char, and the return value is an int. The functions return non-zero (true) if
the argument c satisfies the condition described, and zero if not.

isalnum(c) isalpha(c) or isdigit(c) is true
isalpha(c) isupper(c) or islower(c) is true
iscntrl(c) control character
isdigit(c) decimal digit
isgraph(c) printing charcater except space
islower(c) lower-case letter
isprint(c) printing character including space
ispunct(c) printing character except space or letter or digit
isspace(c) space, formfeed, newline, carriage return, tab, vertical tab
isupper(c) upper-case letter
isxdigit(c) hexadecimal digit

In addition, there are two functions that convert the case of letters,

int tolower(c) convert c to lower case
int toupper(c) convert c to upper case

Syntech Programmable Terminal Programmer's Guide

Standard Library Routines6-2

6.3 String Functions : <string.h>
• Functions start with "str",

In the routine list, the type of variables used are as below,

char *s, t;
const char * cs, ct;
size_t n;
int c;

char *strcpy(s, ct) copy string ct to string s, including 0x00, return s
char *strncpy(s, ct, n) copy at most n characters of string ct to s, return s, pad

with 0x00s if ct has fewer than n characters
char *strcat(s, ct) concatenate string ct to end of string s, return s

char *strncat(s, ct, n) concatenate at most n characters of ct to s, return s
int strcmp(cs, ct) compare string cs and ct, return value < 0 if cs<ct, = 0 if

cs = ct, > 0 if cs>ct
int strncmp(cs, ct, n) compare at most n characters of string cs and ct, return

value < 0 if cs < ct, = 0 if cs = ct, > 0 if cs>ct
char *strchr(cs, c) return pointer to first occurrence of c in cs or NULL if

not present
char *strrchr(cs, c) return pointer to last occurrence of c in cs or NULL if

not present
size_t strspn(cs, ct) return length of prefix of cs consisting of characters in

ct
size_t strcspn(cs, ct) return length of prefix of cs consisting of characters not

in ct
char *strpbrk(cs, ct) return pointer to first occurrence in string cs of any

character of string ct, or NULL if none are present
char *strstr(cs, ct) return pointer to first occurrence of string ct in cs, or

NULL if not present
size_t strlen(cs) return length of string cs

char *strtok(s, ct) searches s for tokens delimited by characters from ct
strcoll NOT SUPPORTED

strerror NOT SUPPORTED

• Functions start with "mem",
In the list, types of variables are as below,

void *s, *t;
const void *cs, *ct;
size_t n;
int c;

void *memcpy(s, ct, n) copy n characters from ct to s, return s
void *memmove(s, ct, n) same as memcpy except that it works fine even if

the objects overlap
int memcmp(cs, ct, n) compare the first n characters of cs with ct; return

as strcmp

Syntech Programmable Terminal Programmer's Guide

Standard Library Routines 6-3

void *memchr(cs, c, n) return pointer to first occurrence of character c in
cs or NULL if not present among the first n
characters

void *memset(s, c, n) place character c into first n characters of s, return
s

6.4 Mathematical Functions : <math.h>
Mathematical functions are listed below and all of them return a double.

double x, y;
int n;

sin(x) sine of x
cos(x) cosine of x
tan(x) tangent of x

asin(x) sin-1(x) in range [-π/2, π/2], x ∈ [-1, 1]
acos(x) cos-1(x) in range [0, π], x ∈ [-1, 1]
atan(x) tan-1(x) in range [-π/2, π/2]

atan2(y, x) tan-1(y/x) in range [-π, π]
sinh(x) hyprebolic sine of x
cosh(x) hyperbolic cosine of x
tanh(x) hyperbolic tangent of x
exp(x) exponential function ex

log(x) natural logarithm ln(x), x>0
log10(x) base 10 logarithm log10(x), x>0

pow(x, y) x
y. A domain error occurs if x=0 and y<=0, or if x<0 and y is

not an integer
sqrt(x) x, x0
ceil(x) smallest integer not less than x, as a double

floor(x) largest integer not greater than x, as a double
fabs(x) absolute value x

ldexp(x, n) x * 2n

frexp(x, int *exp) splits x into a normalized fraction in the interval [1/2, 1],
which is returned, and a power of 2, which is stored in *exp.
If x is zero, both parts of the result are zero.

modf(x, double *ip) splits x into integral and fractional parts, each with the same
sign as x. It stores the integral part in *ip, and returns the
fractional part.

fmod(x, y) floating point remainder of x/y, with the same sign as x. If y is
0, the result is implementation-defined.

Syntech Programmable Terminal Programmer's Guide

Standard Library Routines6-4

6.5 Utility Function : <stdlib.h>
• Number Conversion

double atof(const char *s)
convert s to double, equivalent to strtod(s, (char **)NULL)

int atoi(const char *s)
convert s to integer, equivalent to strtol(s, (char**)NULL, 10)

int atol(const char *s)
convert s to long, equivalent to strtol(s, (char**)NULL, 10)

double strtod(const char *s, char **endp)
converts the prefix of s to double

long strtol(const char *s, char **endp, int base)
converts the prefix of s to long

unsigned long strtoul(const char *s, char **endp, int base)
converts the prefix of s to unsigned long

int rand(void)
returns a random integer from 0 to 32767

void srand(unsigned int seed)
seed for new pseudo-random generation

void *bsearch()
binary search

void qsort()
ascending sorts

int abs(int n)
integer absolute

long labs(long n)
long absolute

div_t div(int num, int denom)
integer division

ldiv_t ldiv(long num, long denom)
long division

• Storage Allocation
Not supported. Please use Syntech library routines instead.

6.6 Diagnostics : <assert.h>
Not supported.

6.7 Variable Argument Lists : <stdarg.h>
Functions for processing variable arguments are listed below.

va_start(va_list ap, lastarg)

Syntech Programmable Terminal Programmer's Guide

Standard Library Routines 6-5

type va_arg(va_list ap, type)
void va_end(va_list ap)

6.8 Non-Local Jumps : <setjmp.h>
Not supported.

6.9 Signals : <signal.h>
Not supported.

6.10 Date and Time Function : <time.h>
Not supported.

6.11 Implementation-defined Limits : <limits.h> and <float.h>
Please refer to limit.h and float.h.

Syntech Programmable Terminal Programmer's Guide

Appendix 7-1

7. Appendix

7.1 Syntech Library Functions List
System

const int WHO_I_AM specify target machine 5-2
void system_start() restart system 5-2

Reader
unsigned char ScannerDesTbl[28] reader operation attribute 5-3
extern char *CodeBuf decoded data buffer 5-3
extern int CodeLen length of decoded data 5-3
extern char CodeType type of symbology/standard 5-3
extern char ScannerNo reader port of current decoding 5-3
int Decode() decode barcode/magnetic card 5-8
void HaltScanner1() stop reader 1 5-9
void HaltScanner2() stop reader 2 5-9
void InitScanner1() initialize and enable reader 1 5-9
void InitScanner1() initialize and enable reader 1 5-9

Buzzer
void on_beeper(int *sequence) activate beeper 5-11
void off_beeper() de-activate beeper 5-11
void volume(int vol) set beeper volume 5-11
int beeper_status() check if beeper in sequence 5-10

Calendar
int set_time(char *new_time) set calendar time 5-13
int get_time(char *time_s) get calendar time 5-13
int adjust_timer(int offset) fine tine calendar 5-12

Digital Input / Output
int get_din(int di) read digital input 5-38
void set_do(int do, int mode, int duration) set digital output 5-38

LED
void set_led(int led, int mode, int duration) set LED 5-38

Keypad
void clr_memkb() clear keypad input buffer 5-44
int mem_kbhit() check if keypad input buffer available 5-41
int mem_getchar() read one character from the keypad buffer 5-42
unsigned long scan_multi_key() read combination-keys 5-42

Syntech Programmable Terminal Programmer's Guide

Appendix7-2

External AT Keyboard
void en_extkb() enable external keyboard 5-43
void dis_extkb() disable external keyboard 5-43
void clr_extkb clear external keyboard input buffer 5-44
int ext_getchar() read one character from the keyboard

buffer
5-44

int ext_kbhit() check if keyboard buffer available 5-44
void capital_lock() set keyboard capslock state 5-44

LCD
const int LCD_TYPE specify LCD type 5-46
int clr_scr() clear display 5-47
int cursor_status() get cursor status 5-47
int set_cursor() set cursor on or off 5-51
int lcd_backlit(int intensity) set backlight intensity 5-47
int printf_s(char *format, ...) formatted display with scroll 5-48
int printf_us(char *format, ...) formatted display without scroll 5-49
int send_lcdc(char c) display one character with scroll 5-49
int send_lcduc(char c) display one character without scroll 5-50
int send_lcds(char *s) display string with scroll 5-50
int send_lcdus(char *s) display string without scroll 5-50
int gotoxy(int x, int y) move to a new display position 5-47
int wherex() get display column position 5-51
int wherey() get display line position 5-52
int wherexy(int *column, int *line) get display position 5-51
int set_lcd_cg(char *font) set customized fonts 5-52

Power
int read_batt() read battery voltage level 5-53
void shut_down() shut down system power 5-53

RS232
void open_com(int port, int parameter) enable and setup RS232 port 5-55
void close_com(int port) disable RS232 port 5-56
char read_com(int port) read 1 bytes from RS232 input buffer 5-56
void write_com(int port, char *s) send string out from RS232 port 5-56
void clear_com(int port) clear RS232 input buffer 5-57
int com_eot(int port) check if transmission in operation 5-57
int com_overrun(int port) check if receive overrun 5-57
void com_rts(int port, int rts) set RTS signal 5-57
int com_cts(int port) get CTS signal level 5-58

Syntech Programmable Terminal Programmer's Guide

Appendix 7-3

RS485
unsigned int RS485_STW RS485 status word 5-61
void open_485(int master, int id) enable & setup RS485 5-62
void close_485() disable RS485 5-62
int test_485() RS485 loop back tester 5-62
int read_485() read a packet from input buffer 5-63
void write_485(int id, char *s) for
master

send string s to slave station id 5-63

void write_485(char *s) for slave prepare echo string to be polled 5-64

Memory
void download(int port) download program code from RS232 port 5-65
int clone() program another machine 5-65
void init_free_memory() initialize file space 5-65
int test_memory(char *saddr, long length,
 int start, int step)

SRAM read/write test 5-66

File (Common)
long free_memory() get size of free memory 5-25
int read_error_code() reader global error code 5-31
int access(char * filename) check file existence 5-17
int rename(char *oname, char*nname) change file name 5-34
int remove(char fd) delete a file 5-33
int filelist(char *dir) get file directory information 5-25

File (DAT)
int open(char *name) open a DAT file 5-29
int close(int fd) close a DAT file 5-20
int ch_size(int fd, long new_size) extend or truncate a file 5-19
long filelength(int fd) get file length 5-25
long lseek(int fd, long offset, int origin) move pointer of a DAT file 5-27
long tell(int fd) get file pointer 5-35
int eof(int fd) check if point to end of file 5-24
int read(int fdm char *buf, unsigned count) read number of bytes from a DAT file 5-30
int readln(int fd, char *buf, unsigned count) read one line from a DAT file 5-31
int write(int fd, char *buf, unsigned count) write number of bytes to a DAT file 5-36
int writeln(int fd, char *buf) write a line to a DAT file 5-36
int append(int fd, char *buffer, int count) append number of bytes to file 5-18
int appendln(int fd, char *buffer) append a string to a file 5-19
int delete_top(int fd, unsigned count) remove number of bytes from top of a

DAT file
5-23

int delete_topln(int fd) delete one line from top of a DAT file 5-24

Syntech Programmable Terminal Programmer's Guide

Appendix7-4

File (DBF)
int open_DBF(char *name) open a DBF file 5-29
int close_DBF(int fd) close a DBF file 5-20
int add_member(int DBF_fd, char *member) add a member to file 5-17
int delete_member(int fd, int keyn) delete a member of a DBF file 5-22
long member_in_DBF(int fd) number of members in a DBF file 5-28
int has_member(int fd, int keyn, char *key) check if a member exists in a DBF file 5-26
int get_member(int fd, int keyn, char *buffer) read the member pointed by 5-26
long tell_DBF(int fd, int keyn) get file pointer 5-35
long lseek_DBF(int fd, int keyn,
 long offset, int origin)

move pointer of a DBF file 5-28

int create_DBF(char *name, unsigned len) create a DBF file 5-21
int create_index(int fd, int keyn,
 int key_offset, int key_len)

create an index file of a DBF file 5-21

int rebuild_index(int fd, int keyn, int
pre_index, int key_offset, int key_leng)

rebuild an IDX of a DBF file 5-32

int remove_index(int fd, int keyn) delete an index file 5-33

	System Requirements
	Installation
	Setup
	Development Flow
	Create Your Own C source program
	Compile
	Link
	Format Translation
	Download and program the flash memory
	Using ROM emulator
	From Link To Download

	Size of types�xe "types"
	power on reset
	SRAM
	variables
	Barcode and Magnetic Card Decoding
	Code Type
	Scanner Description Table
	Beeper Sequence�xe "Beeper Sequence"
	Beep Frequency
	Beep Duration
	Timer Adjustment
	Trimming Register
	Leap Year
	File Space
	File Name
	File Handle
	Error Code
	Directory
	DAT Files
	DBF Files and IDX Files
	Scrolling
	Customized Fonts
	Special Characters
	Main Battery
	Parameters
	Receive Buffer
	Transmit Buffer
	Flow Control
	Parameter
	Station ID
	Master/Slave
	Packet
	Master
	Slave
	Status Word
	RS485 Processing

