
520 Data Terminal C Language
Programming Guide

Copyright © 1999 Syntech Information Co., Ltd.

SYNTECH INFORMATION CO., LTD.

Russian Office: Narodnogo Opolchenia, 34, 212, 123423, Moscow, Russia
Tel: +7 095 197-1871 Fax: +7 095 946-8611
e-mail: cipherlab@iname.com http:// www.syntech.ru

mailto:syciphe1@ms4.hinet.net
http://www.syntech.ru/

 ii

TABLE OF CONTENTS
Preface .. iv
1 Development Environment ..1

1.1 Directory Structure..1
1.2 Setup ...2
1.3 Development Flow..3

1.3.1 Create Your Own C source program ...3
1.3.2 Compile..4
1.3.3 Link...4
1.3.4 Format Translation..6
1.3.5 Download Program to Flash Memory..6

1.4 C Compiler ..7
1.4.1 Size of Types...7
1.4.2 Representation Range of Integers...7
1.4.3 Floating Types...8
1.4.4 Alignment...8
1.4.5 Register and Interrupt Handling ...8
1.4.6 Reserved Words..8
1.4.7 Extended Reserved Words ..8
1.4.8 Bit-Field Usage..9

2 520 Function Library ..11
2.1 System...11

2.1.1 Power On Reset (POR) ..11
2.1.2 System Variables ..11

2.2 Reader...13
2.2.1 Barcode and Magnetic Card Decoding..13
2.2.2 Code Type ...13
2.2.3 Scanner Description Table...14

2.3 Buzzer..19
2.3.1 Beeper Sequence ...19
2.3.2 Beep Frequency..19
2.3.3 Beep Duration..19

2.4 Calendar..21
2.4.1 Timer Adjustment..21
2.4.2 Trimming Register...21
2.4.3 Leap Year ..21

2.5 File Manipulation...24
2.5.1 File System..24
2.5.2 File Name ..24
2.5.3 File Handle (File Descriptor)...24
2.5.4 Error Code ...25
2.5.5 Directory...25
2.5.6 DAT Files ...25
2.5.7 DBF Files and IDX Files ...25

2.6 Digital Input / Output...44
2.7 LED..45
2.8 Keypad...46
2.9 External AT Keyboard ..49
2.10 LCD..51

2.10.1 Graphic Display...51
2.10.2 Special Font Files..52

2.11 Power...59
2.11.1 Backup Batteries ...59

2.12 Communication Ports ...60
2.12.1 Parameters ..60
2.12.2 Receive Buffer...60

 iii

2.12.3 Transmit Buffer..60
2.12.4 Flow Control ..60

2.13 RS485..65
2.13.1 Parameter ..65
2.13.2 Station ID ...65
2.13.3 Master/Slave..65
2.13.4 Packet ..65
2.13.5 Master ..65
2.13.6 Slave ..66
2.13.7 Status Word...66
2.13.8 RS485 Processing ..67

2.14 Memory..70
2.15 Miscellaneous ...72

3 Standard Library Routines...73
3.1 Input and Output : <stdio.h> ..73
3.2 Character Class Test : <ctype.h>..73
3.3 String Functions : <string.h>..73
3.4 Mathematical Functions : <math.h> ..74
3.5 Utility Function : <stdlib.h>...75
3.6 Diagnostics : <assert.h>...75
3.7 Variable Argument Lists : <stdarg.h>..75
3.8 Non-Local Jumps : <setjmp.h>..75
3.9 Signals : <signal.h> ..76
3.10 Date and Time Function : <time.h> ...76
3.11 Implementation-defined Limits : <limits.h> and <float.h> ..76

4 Real Time Kernel..77
5 Sample Programs...82

5.1 User0 ...82
5.1.1 Program Description ...82
5.1.2 Source Code..83

5.1.2.1 User0.lnk...83
5.1.2.2 User0.c..84

 iv

Preface

Users can generate customized application programs for the 520 Data Terminal by using the C
Compiler with Syntech 520 Function Library and/or the Basic Compiler with 520 Basic Compiler
Run-Time Engine. This programming guide describes the application development with the C
Compiler in chapters. It starts with the general introduction about the feature and operation of
the development tool, the definition of the functions/ statements, and sample programs are all
included.

Chapter 1, “Development Environment”, gives a concise introduction about the C Compiler and
provides a step by step description in developing application programs for the 520 Data
Terminal with the C Compiler. Chapter 2, “C Compiler”, discusses some specific characteristics
of the C Compiler. Chapter 3, “520 Function Library”, presents the user callable library routines
specific to the features of the 520 Data Terminal. In Chapter 4, “Standard Library Routines”, the
standard ANSI library routines are briefly described, as the more detailed information can be
found in many ANSI C related literature. Chapter 5, “Real Time Kernel”, discusses the concepts
of the real time kernel, µC/OS. User can generate a real time multitasking system by using the
µC/OS functions. Chapter 6, “Sample Programs”, contains source codes of two sample
programs. They illustrate the use of the 520 function library and also give user an idea of the
520 application in the real world.

 1

1 Development Environment

1.1 Directory Structure

The CipherLab 520 Data Terminal C Language Development Kit contains six directories,
namely, BIN, ETC, INCLUDE, LIB , README, and USER. The purposes/contents of each
directory are listed below.

1) BIN{xe "BIN"} : This directory contains 18 files.

• 16 execution files for compilation, linking and so on,
asm900.exe, cc900.exe, dos4gw.exe, f_amd4.exe,

mac900.exe, pminfo.exe, privatxm.exe, rminfo.exe,
thc1.exe, thc2.exe, tuapp.exe, tuconv.exe,
tufal.exe, tulib.exe, tulink.exe, tumpl.exe

• wemu387.386 : used when DOS extender is to be run under Windows on a
386 machine

• Download.exe : download program via standard RS-232 port

Usage of these executable files will be described further in later sections.

2) ETC{xe "ETC"} : 11 files, help and version information of the C compiler

3) INCLUDE{xe "INCLUDE"}
• 15 Include files for standard library routines

assert.h ctype.h errno.h float.h
limits.h locale.h math.h setjmp.h
signal.h stdarg.h stddef.h stdio.h

stdlib.h string.h time.h

• 1 Include file for 520 Function Library : 520lib.h

• 1 Include file for Real Time Kernel Library : ucos.h

4) LIB{xe "LIB"} : Library object code files

• c900ml.lib C standard library

• 520lib.lib 520 function library

5) README{xe "README"} : C compiler version update and supplemental information

6) USER : contains the source code for the user sample program.

To set up your C language development environment for 520, you can create the \SYNTECH
sub-directory from the root directory and then copy the six mentioned directories to the
\SYNTECH sub-directory.

 2

\ (root) SYNTECH LIB (library code)

ETC (C compiler version information)

INCLUDE (include files for library functions)

BIN (all executable files)

README (C compiler other informations)

 USER1

*.C (source files)

*.H (include files)

1.2 Setup

Before using these software programs, some environmental variables must be added to the
autoexec.bat.

1) path = (your own path);c:\SYNTECH\BIN
So all executable files (.EXE & .BAT) can be found.

2) set THOME900=c:\SYNTECH
This is a must for the C compiler to locate all necessary files

3) set tmp = c:\tmp
skip this if tmp is already specified.

Step 3 can be ignored if tmp was already specified. This is the temporary working directory for
compiler and linker (for memory and file swapping).

To facilitate efficiency, the compiler invokes a virtual memory manager "DOS4GW". It
recognizes and supports various PCs. However, if it does not work on your PC. The program
PMINFO can be used to identify the problem. (if you have difficult using the compiler, run the
PMINFO, print all messages and then contact Syntech)

If you are using a 386 PC (no floating point unit) and is going to run these programs under
MS-Windows compatible BOX. The module "WEMU387.386" must be installed into
SYSTEM.INI.

1) copy the WEMU387.386 to the SYSTEM directory of the Windows

2) add "device=WEMU387.386" to the file SYSTEM.INI

 3

1.3 Development Flow

The development process is much like writing any other C programs on PC. The flow is
illustrated as below,

C language
Source Program
(.C)

Relocatable
Object File
(.REL)

Absolute
Object
(.ABS)

TULINK.EXE

Linker
Map File
(.LNK)

Motorola
S Format
(.SHX)

TUCONV.EXE

Target
Machine
Flash-Memory

Download.exe / IrDALoad.exe

Library
Object File
(.LIB)

TEXT EDITOR

Assembly
List File
(.ASM)

Compile
Error Message
(CERR.LST)

1.3.1 Create Your Own C source program

The first step is to create or modify the desired C programs using any text editors. It is
recommended to use ".C" as the file extension and create them under the sub-directory
"User". And then use the "User" sub-directory as the working directory. Also, it is
recommended to separate the whole programs into modules while retaining function integrity.
And put modules into separate files to facilitate compilation time.

 4

1.3.2 Compile

To compile the C programs, use cc900 command in the subdirectory of the target file.

CC900 –[options] FILENAME.C

For the usage of the cc900 command and the options, please refer to the cc900.hlp in the
ETC subdirectory.

The batch file “y.bat” which can be found under the sub-directories user0 and user0 has been
created to simplify the compiling process.

Y FILENAME.C

This batch file invokes the C compiler driver which calls many other executable programs
under the sub-directory BIN. As these programs are invoked by the driver sequentially, their
individual use can be ignored. Also, many parameters are set in calling the compiler driver to
accommodate target machine environments. In attempting to write your own batch file,
remember to put the same parameters. These parameters are listed below,

• -XA1, -XC1, -XD1, -Xp1 : alignment setting, all 1

• -XF : no deletion of assembly file, if examination of the assembly file is not
necessary, this option can be removed

• -O3 : set optimization level (can be 0 to 3, no to maximum optimization). If code size
and performance is not a problem, this option can be removed which will then set to
the default -O0, that is, no optimization at all. If optimization is enabled, care must be
taken that some instructions might be optimized and removed. For example,

test()
{

unsigned int old_msec;
old_msec=sys_msec;
while (old_msec == sys_msec) ;

}

This routine waits till sys_msec changed. And sys_msec is a system variable that is
updated each 5 ms by background interrupt. If optimization is enabled, this whole
routine is truncated as it is meaningless (which is a dead-loop). To avoid this, the type
qualifier "volatile " can be used to suppress optimization.

• -c : create object but no link

• -e cerr.lst : create error list file "cerr.lst"

After compilation is completed, a relocatable object file named "program_name.rel" is created
which can be used later by the linker to create the absolute object. As the compiler compiles
the program into assembler form during the process, an accompanying assembler source file
"program_name.asm" is also created. This file helps in debugging if necessary. If any error
occurs, they will be put into the file "CERR.LST" for further examination.

1.3.3 Link

If the C source programs are successfully compiled into relocatable object files. The linker
must be used to create the absolute objects and then can be downloaded into the target
machine flash memory for execution. However, a linker map file must be created,.

TULINK FILENAME.LNK

This map file "FILENAME.LNK" is used to instruct the linker to allocate absolute addresses of
code, data, constant and so on according to the target machine environments. This is a
lengthy process as it depends on the hardware architecture. Fortunately, a sample linker map
file is provided and few steps are required to customize it for your own need, while leaving
hardware-related stuff unchanged.

 5

As you can see from the sample linker file listed as follows, the only parts have to be changed
is the file names (under lined & bolded sections). If successfully linked, an absolute object file
named "FILE1.ABS" is created. Also a file named "FILE1.MAP" lists all code, variable
addresses and error messages if any.

-lm -lg /* parameters for TULINK, don't change */
FILE1.REL /* your C program name */
FILE2.REL /* your C program name */
....
....
FILEN.REL /* your C program name */
..\lib\c900ml.lib /* standard library */
..\lib\520lib.lib /* 520 Function library */

/***/
/* User could provide desirable values to */
/* the following two variables. */
/***/
___MainStackSize__ = 0x001000;
HeapSize = 0x000100;

/***/
/* Do not modify anything beyond this line */
/***/
memory
{
 RAM : org = 0x400100, len = 0x01ff00
 ROM : org = 0xf80000, len = 0x070000
 IO : org = 0x100000, len = 0x100000
}

sections
{
 code org = 0xf80000 : {
 *(f_head)
 *(f_code)
 } > ROM

 sys_area org = 0x400100 : {
 *(f_bcr)
 ..\lib\520lib.lib(f_area)
 ..\lib\c900ml.lib(f_area)
 } > RAM

 data org=org(code)+sizeof(code) addr=org(sys_area)+sizeof(sys_area) : {
 *(f_data)
 } /* global variables with initial values */

 xcode org = org(data) + sizeof(data) addr = addr(data) + sizeof(data) : {
 (f_xcode) / code reside on RAM */
 }

 const org = org(xcode) + sizeof(xcode) : {
 *(f_const)
 *(f_tail)
 } > ROM

 area org = addr(xcode) + sizeof(xcode) : {
 . += ___MainStackSize__;
 . += HeapSize;
 *(f_unshare)
 *(f_area)
 } > RAM
}

SysRamEnd = org(area) + sizeof(area);
DataRam = addr(data);
CodeRam = addr(xcode);
HeapTop = org(area) + ___MainStackSize__;
___MainStack__ = org(area);
/* End */

 6

1.3.4 Format Translation

The absolute object file created by TULINK is stored in TOSHIBA's own format. However, a
program "TUCONV" can be used to transform it into popular Motorola S format.

TUCONV{xe "TUCONV"} -Fs32 -o FILENAME.shx FILENAME.abs

The file extension ".shx" is a must for the code downloader.

The batch file “z.bat” which can be found under the sub-directories user0 and user0 has been
created to simplify the linking and format translation process.

Z

1.3.5 Download Program to Flash Memory

Now the Motorola S format absolute object file FILENAME.shx is successfully created. It is
ready to be downloaded into the flash memory for testing.

• FILENAME : the absolute object code file name, file extension must not be
specified as ".shx" is automatically appended.

• COMPORT : A digit from 1 to 4 to specify RS232 communication port to be
used for downloading. Care must be taken that in order to support high baud
rate (up to 38400), the download program accesses the UART chip directly.
The UART must be NSC8250 compatible and their starting I/O addresses are
listed below,

Port # Starting Address
1 0x3f8
2 0x2f8
3 0x3e8
4 0x2e8

• BAUDRATE : baud rate support are 38400, 19200, 9600, 4800, 2400 and
1200.

• PARITY : the parity can be one of "E", "O" or "N" for even, odd and no parity.
• DATABITS : 7 or 8

The baud rate, parity and data bits selected must match the target machine RS232 ports
settings.

 7

1.4 C Compiler

This C compiler is for TOSHIBA TLCS-900 family 16-bit MCUs. It is mostly ANSI compatible.
However, some specific characteristics are listed below,

1.4.1 Size of Types{xe "types"}
Type Size in byte

char, unsigned char 1
short int, unsigned short int, int, unsigned int 2
long int, unsigned long int, 4
pointer 4
structure, union 4

Note that the signed and unsigned short int is 2 bytes long. This might cause trouble in calling
sscanf(), for example,

{
char c, s[20];
int i;
strcpy(s, "123 456");
sscanf(s, "%d %hd ", &i, &c);

}

The end result will be i=123 and c=(456-256)=200, negative for signed character. And the
sscanf stores 2 bytes back to variable c's address. That is, the variable located following c is
changed.

1.4.2 Representation Range of Integers

Macros concerning the representation ranges of the values of integer types are defined in the
header file <limits.h> as below,

Macro Name Contents

CHAR_BIT number of bits in a byte (the smallest object)

SCHAR_MIN minimum value of signed char type

SCHAR_MAX maximum value of signed char type

CHAR_MIN minimum value of char type

CHAR_MAX maximum value of char type

UCHAR_MAX maximum value of unsigned char type

MB_LEN_MAX number of bytes in a wide character constant

SHRT_MIN minimum value of short int type

SHRT_MAX maximum value of short int type

USHRT_MAX maximum value of unsigned short int type

INT_MIN minimum value of int type

INT_MAX maximum value of int type

UINT_MAX maximum value of unsigned int type

LONG_MIN minimum value of long int type

LONG_MAX maximum value of long int type

ULONG_MAX maximum value of unsigned long int type

 8

1.4.3 Floating Types

Float types are supported and conforms to IEEE standards,

Type Size in bits
float 32

double 64
long double 64

1.4.4 Alignment

Alignments of different types can be adjusted. This is to facilitate CPU performance while
sacrificing memory spaces. However as all target systems utilize 8-bit data bus, the alignment
does not effect performance and is fixed to 1 for all types. In invoking the C compiler driver -
XA1, -XD1, -XC1 and -Xp1 is specified.

1.4.5 Register and Interrupt Handling

These are possible through C. However, they are inhibited as all accessing to system
resources should be made via Syntech library routines.

1.4.6 Reserved Words

Basic reserved (common to all Cs) words are listed below,

auto double int struct break
else long switch case enum

register typedef char extern return
union const float short unsigned
continue for signed void default

goto sizeof volatile do if
static while

1.4.7 Extended Reserved Words

These reserved words are specific to this C compiler and all of them start with "_ _", two
underscores.

_ _adcel _ _cdcel _ _near _ _far
_ _tiny _ _asm _ _io

_ _XWA _ _XBC _ _XDE _ _XHL
_ _XIX _ _XIY _ _XIZ _ _XSP

_ _WA _ _BC _ _DE _ _HL
_ _IX _ _IY _ _IZ _ _W
_ _A _ _B _ _C _ _D

_ _E _ _H _ _L _ _SF
_ _ZF _ _VF _ _CF

_ _DMAS0 _ _DMAS1 _ _DMAS2 _ _DMAS3
_ _DMAD0 _ _DMAD1 _ _DMAD2 _ _DMAD3

_ _DMAC0 _ _DMAC1 _ _DMAC2 _ _DMAC3
_ _DMAM0 _ _DMAM1 _ _DMAM2 _ _DMAM3
_ _NSP _ _XNSP _ _INTNEST

 9

1.4.8 Bit-Field{xe "Bit-Field"} Usage

The following types can be used as the bit field base types.

Type Bits

char, unsigned char 8

short int, int,
 unsigned short int, unsigned int

16

long int, unsigned long int 32

The allocation is made as follows,
1) Fields are stored from the highest bits

struct field1 {
unsigned int a:1;
unsigned int b:2;
unsigned int c:3;
unsigned int d:1;
unsigned int e:8;

}

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

a b c d e

MSB LSB

2) Little endien

If the base type of a bit field member is a type requiring two bytes or more (e.g.
unsigned int), the data is stored in memory after its bytes are turned topside down.

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
Higher 8 bits Lower 8 bits

Offset
+0

+1

3) Different types : A bit field with different type is assigned to a new area

struct field {
unsigned char a:2;
unsigned short b:3;

}

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

a

b

 10

4) Different type (signed/unsigned)

struct field {
signed short a:2;
unsigned short b:3;
signed short c:4;

}

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

a b c

5) Different type (same size)

struct field {
signed short a:5;
unsigned int b:4;

}

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

a

b

The bit-field can be very useful in some cases. However, if memory is not a concern, it is
recommended not to use the bit-fields. As the code size and performance are degraded.

 11

2 520 Function Library

CipherLab provides several user-callable library routines to facilitate the development of the
user’s application. These functions are called within the user’s C programs to perform a wide
variety of tasks, including communications, LCD, buzzer, scanner, file manipulation, etc. They
are categorized and described in this chapter by their functions or the resources they work on.
The function prototypes of the library routines and the declaration of the system variables can
be found in the 520 Library Header File, “520lib.h”. Assumption was made that the reader has
prior knowledge of the C language.

2.1 System

2.1.1 Power On Reset (POR)

After reset, a portion of library functions called POR routine initializes the system hardware,
buffers, and parameters, such as follows,

• RS232, RS485 ports : all disabled

• reader ports : all disabled

• keypad scanning : enabled

• LCD display : initialized and cleared to blank, cursor is on and set to the upper-left
corner (0,0)

• calendar chip : initialized

• LEDs : all off

• allocate stack area and other parameters

Control is then transferred to a function called "main " which is the start point of the C
program. There must be one and only one function in the C program that is called "main"
which can then initialize the system according to application needs.

2.1.2 System Variables

Two time variables are declared by the system, which can be used for counting time-out and
so on. As they are updated by timer interrupt, DO NOT write to them.

• extern volatile unsigned long sys_msec{xe "sys_msec"}; /* in unit of 5 ms */

• extern volatile unsigned long sys_sec{xe "sys_sec"}; /* in unit of 1 second
*/

These two variables are cleared to 0 upon power up.

shut_down
purpose Stop the system

syntax void shut_down();

example call shut_down();

description The routine will shut down the system.

returns none

 12

system_restart
purpose Re-start the system

syntax void system_restart();

example call system_restart();

description The routine jumps to the power on reset point and restarts the system. It
functions the same as turn power off then on.

returns none

 13

2.2 Reader

The barcode decoding routines consist of 5 functions: InitScanner1() , InitScanner2() ,
Decode() , HaltScanner1() and HaltScanner2() . The InitScanner1() and InitScanner2()
functions are used to initialize the respective scanner port. The Decode() function is used to
perform decoding. And the HaltScanner1() and HaltScanner2() functions are used to stop
the respective scanner port from operating.

2.2.1 Barcode and Magnetic Card Decoding

To enable barcode decoding capability in the system, the scanner port must be first initialized
by use of InitScanner1() and InitScanner2() functions. After the scanner ports are initialized,
the Decode() function can be called in the program loops to perform barcode decoding.

It is not necessary to specify the type of scanners connected to the scanner ports. The
barcode and magnetic card decoding routines will automatically recognize the scanner type
whether it is a WAND, WAND/LASER emulation scanner, or an MSR scanner.

There are six variables relate to the barcode decoding routines: ScannerDesTbl , CodeBuf ,
CodeLen , CodeType , MsrDirection and ScannerNo . These variables are declared by the
system, the user program needs not to declare them.

ScannerDesTbl : This 28 bytes of unsigned character array governs the
operation of the Decode routine.

CodeBuf : This string contains the decoded data upon successful
decoding.

CodeLen : This integer indicates the length of the decoded data upon
successful decoding.

CodeType : This character indicates the type of code (symbology) being
decoded upon successful decoding.

MsrDirection : This integer indicates the reading direction of the magnetic card
being decoded upon successful decoding.

ScannerNo : This character indicates the scanner port being decoded upon
successful decoding.

2.2.2 Code Type

The following list shows the possible values of the CodeType variable.

Name Type Name Type

Code 39 A EAN8 with Addon 2 N

Italy Pharma-code B EAN8 with Addon 5 O

CIP 39 C EAN13 no Addon P

Industrial 25 D EAN13 with Addon 2 Q

Interleave 25 E EAN13 with Addon 5 R

Matrix 25 F MSI S

Codabar (NW7) G Plessey T

Code 93 H Code ABC U

Code128 I ISO Track 1 a

UPCE no Addon J ISO Track 2 b

UPCE with Addon 2 K ISO Track 1 and 2 c

UPCE with Addon 5 L ISO Track 2 and 3 d

EAN8 no Addon M

 14

2.2.3 Scanner Description Table

The unsigned character array ScannerDesTbl governs the Decode function operation. The
following table describes the details of the ScannerDesTbl variable.

Subscriptor Bit Description
0 7 1 : Enable Code 39

0 : Disable Code 39
0 6 1 : Enable Italy Pharma-code

0 : Disable Italy Pharma-code
0 5 1 : Enable CIP 39

0 : Disable CIP 39
0 4 1 : Enable Industrial 25

0 : Disable Industrial 25
0 3 1 : Enable Interleave 25

0 : Disable Interleave 25
0 2 1 : Enable Matrix 25

0 : Disable Matrix 25
0 1 1 : Enable Codabar (NW7)

0 : Disable Codabar (NW7)
0 0 1 : Enable Code 93

0 : Disable Code 93
1 7 1 : Enable Code 128

0 : Disable Code 128
1 6 1 : Enable UPCE no Addon

0 : Disable UPCE no Addon
1 5 1 : Enable UPCE Addon 2

0 : Disable UPCE Addon 2
1 4 1 : Enable UPCE Addon 5

0 : Disable UPCE Addon 5
1 3 1 : Enable EAN8 no Addon

0 : Disable EAN8 no Addon
1 2 1 : Enable EAN8 Addon 2

0 : Disable EAN8 Addon 2
1 1 1 : Enable EAN8 Addon 5

0 : Disable EAN8 Addon 5
1 0 1 : Enable EAN13 no Addon

0 : Disable EAN13 no Addon
2 7 1 : Enable EAN13 Addon 2

0 : Disable EAN13 Addon 2
2 6 1 : Enable EAN13 Addon 5

0 : Disable EAN13 Addon 5
2 5 1 : Enable MSI

0 : Disable MSI
2 4 1 : Enable Plessey

0 : Disable Plessey
2 3 Reserved
2 2 – 0 Reserved
3 7 – 0 Reserved
4 7 – 0 Reserved

continued on next page

 15

continued from previous page
Subscriptor Bit Description

5 7 1 : Transmitting Code 39 Start/Stop Character
0 : No Transmitting Code 39 Start/Stop Character

5 6 1 : Verifying Code 39 Check Character
0 : No Verifying Code 39 Check Character

5 5 1 : Transmitting Code 39 Check Character
0 : No Transmitting Code 39 Check Character

5 4 1 : Full ASCII Code 39
0 : Standard Code 39

5 3 1 : Transmitting Italy Pharmacode Check Character
0 : No Transmitting Italy Pharmacode Check Character

5 2 1 : Transmitting CIP39 Check Character
0 : No Transmitting CIP39 Check Character

5 1 1 : Verifying Interleave 25 Check Digit
0 : No Verifying Interleave 25 Check Digit

5 0 1 : Transmitting Interleave 25 Check Digit
0 : No Transmitting Interleave 25 Check Digit

6 7 1 : Verifying Industrial 25 Check Digit
0 : No Verifying Industrial 25 Check Digit

6 6 1 : Transmitting Industrial 25 Check Digit
0 : No Transmitting Industrial 25 Check Digit

6 5 1 : Verifying Matrix 25 Check Digit
0 : No Verifying Matrix 25 Check Digit

6 4 1 : Transmitting Matrix 25 Check Digit
0 : No Transmitting Matrix 25 Check Digit

6 3 - 2 Select Interleave25 Start/Stop Pattern
00 : Use Industrial25 Start/Stop Pattern
01 : Use Interleave25 Start/Stop Pattern
10 : Use Matrix25 Start/Stop Pattern
11 : Undefined

6 1 – 0 Select Industrial25 Start/Stop Pattern
00 : Use Industrial25 Start/Stop Pattern
01 : Use Interleave25 Start/Stop Pattern
10 : Use Matrix25 Start/Stop Pattern
11 : Undefined

7 7 – 6 Select Matrix25 Start/Stop Pattern
00 : Use Industrial25 Start/Stop Pattern
01 : Use Interleave25 Start/Stop Pattern
10 : Use Matrix25 Start/Stop Pattern
11 : Undefined

7 5 – 4 Codabar Start/Stop Character
00 : abcd/abcd
01 : abcd/tn*e
10 : ABCD/ABCD
11 : ABCD/TN*E

7 3 1 : Transmitting Codabar Start/Stop Character
0 : No Transmitting Codabar Start/Stop Character

8 2 – 0 Reserved
7 7 – 0 Reserved

continued on next page

 16

continued from previous page
Subscriptor Bit Description

9 7 - 6 MSI Check Digit Verification
00 : Single Modulo 10
01 : Double Modulo 10
10 : Modulo 11 and Modulo 10
11 : Undefined

9 5 - 4 MSI Check Digit Transmission
00 : the last Check Digit is not transmitted
01 : both Check Digits are transmitted
10 : both Check Digits are not transmitted

9 3 1 : Transmitting Plessey Check Characters
0 : No Transmitting Plessey Check Characters

9 2 1 : Converting Standard Plessey to UK Plessey
0 : No Converting

9 1 1 : Converting UPCE to UPCA
0 : No Converting

9 0 1 : Converting UPCA to EAN13
0 : No Converting

10 7 1 : Enable ISBN Conversion
0 : No Conversion

10 6 1 : Enable ISSN Conversion
0 : No Conversion

10 5 1 : Transmitting UPCE Check Digit
0 : No Transmitting UPCE Check Digit

10 4 1 : Transmitting UPCA Check Digit
0 : No Transmitting UPCA Check Digit

10 3 1 : Transmitting EAN8 Check Digit
0 : No Transmitting EAN8 Check Digit

10 2 1 : Transmitting EAN13 Check Digit
0 : No Transmitting EAN13 Check Digit

10 1 1 : Transmitting UPCE System Number
0 : No Transmitting UPCE System Number

10 0 1 : Transmitting UPCA System Number
0 : No Transmitting UPCA System Number

11 7 1 : Converting EAN8 to EAN13
0 : No Converting

11 6 Reserved
11 5 Reserved
11 4 1 : Enable Negative Barcode

0 : Disable Negative Barcode
11 3 – 2 00 : No Read Redundancy for Scanner Port 1

01 : One Time Read Redundancy for Scanner Port 1
10 : Two Times Read Redundancy for Scanner Port 1
11 : Three Times Read Redundancy for Scanner Port 1

11 1 – 0 Reserved
continued on next page

 17

continued from previous page
Subscriptor Bit Description

12 7 1 : Industrial 25 Code Length Limitation in Max/Min Length
Format

0 : Industrial 25 Code Length Limitation in Fix Length Format
12 6 – 0 Industrial 25 Max Code Length / Fixed Length 1
13 7 – 0 Industrial 25 Min Code Length / Fixed Length 2
14 7 1 : Interleave 25 Code Length Limitation in Max/Min Length

Format
0 : Interleave 25 Code Length Limitation in Fix Length Format

14 6 – 0 Interleave 25 Max Code Length / Fixed Length 1
15 7 - 0 Interleave 25 Min Code Length / Fixed Length 2
16 7 1 : Matrix 25 Code Length Limitation in Max/Min Length Format

0 : Matrix 25 Code Length Limitation in Fix Length Format
16 6 - 0 Matrix 25 Max Code Length / Fixed Length 1
17 7 - 0 Matrix 25 Min Code Length / Fixed Length 2
18 7 1 : MSI Code Length Limitation in Max/Min Length Format

0 : MSI Code Length Limitation in Fix Length Format
18 6 - 0 MSI 25 Max Code Length / Fixed Length 1
19 7 - 0 MSI Min Code Length / Fixed Length 2
20 7 - 4 Scan Mode for Scanner Port 1

0000 : Auto Off Mode
0001 : Continuous Mode
0010 : Auto Power Off Mode
0011 : Alternate Mode
0100 : Momentary Mode
0101 : Repeat Mode
0110 : Laser Mode
0111 : Test Mode

20 3 - 0 Reserved
21 Scanner Time-out Duration in seconds for Scanner Port 1
22 Reserved

 18

Decode
purpose Perform barcode decoding.

syntax int Decode();

example call while (1) { if (Decode()) break; }

description Once the scanner port is initialized (by use of InitScanner1 function), call
this Decode function to perform barcode decoding. This function should
be called constantly in user's program loops when barcode decoding is
required.

If the barcode decoding is not required for a long period of time, it is
recommended that the scanner port should be stopped by use of the
HaltScanner1 function.

If the Decode function decodes successfully, the decoded data will be
placed in the string variable CodeBuf with a string terminating character
appended. And the integer variable CodeLen, and the character variable
CodeType will reflect the length and the code type of the decoded data
respectively.

returns Upon successful decoding, the Decode function returns an integer
whose value equals to the string length of the decoded data. If decoding
failed, an integer value of 0 is returned.

HaltScanner1, HaltScanner2
purpose Stop respective scanner port from operating.

syntax void HaltScanner1();
void HaltScanner2();

example call HaltScanner1();
HaltScanner2();

description Use HaltScanner1 function to stop scanner port 1 from operating and
use HaltScanner2 function to stop scanner port 2 from operating. To
restart a halted scanner port, the initialization function (InitScanner1 and
InitScanner2) must be called.

It is recommended that the scanner ports should be stopped if the
barcode decoding is not required for a long period of time.

returns none

InitScanner1, InitScanner2
purpose Initialize respective scanner port.

syntax void InitScanner1();
void InitScanner2();

example call InitScanner1();
InitScanner2();
while (1) { if (Decode()) break; }

description Use InitScanner1 function to initialize scanner port 1 and use
InitScanner2 function to initialize scanner port 2 . The scanner ports
won't work unless they are initialized.

returns none

 19

2.3 Buzzer

This section describes the beeper manipulation routines. The activating of beeper is directed
by specifying a beeper sequence , which is a series of beep frequency / beep duration
pairs. Once a beeper sequence is specified, the activation of the beeper according to it is
automatically handled by the background program. There is no need for the application
program waiting for the beeper stops.

Also there are routines for determining whether a beeper sequence is under going, or to
terminate a beeper sequence immediately.

2.3.1 Beeper Sequence{xe "Beeper Sequence"}

A beeper sequence is an integer array which is used to instruct how the beeper activates. It is
comprised of beep frequency{xe "beep frequency"} / beep duration{xe "beep duration"}
pairs. Each pair represents one beep. A beep with beep duration value of 0 represents end of
beeper sequence, the beeper will then terminate activation.

2.3.2 Beep Frequency

A beep frequency is an integer used to specify the frequency (tone) when the beeper
activates. The actual frequency that the beeper activates is not the value specified to the
beep frequency. It is calculated by the following formula.

Beep Frequency = 76000 / Actual Frequency Desired

For instance, to get a frequency of 4KHz, the value of beep frequency should be 19. If no
sound is desired (pause), the beep frequency should be set to 0. A beep with frequency 0
does not terminate the beeper sequence. Suitable frequency for the beeper ranges from 1 to
6 KHz, where peak at 4 KHz.

2.3.3 Beep Duration

Beep duration is an integer used to specify how long the beeper activates with a specified
beep frequency. Beep duration is specified in units of 0.05 second. To get a beep of 1
second, the beep duration should be 20. Beep duration with value of 0 will terminate the
beeper sequence.

 20

beeper_status
purpose To see whether a beeper sequence is under going or not.

syntax int beeper_status();

example call while (beeper_status()); /* wait till beeper sequence complete */

description The beeper_status function checks if there is a beeper sequence in
progress.

returns 1 if beeper sequence still in progress, 0 otherwise

off_beeper
purpose Terminate beeper sequence.

syntax void off_beeper();

example call off_beeper();

description The off_beeper function terminates beeper sequence immediately if
there is a beeper sequence in progress.

returns The off_beeper function has no return value.

on_beeper
purpose Assign a beeper sequence to instruct beeper action.

syntax void on_beeper(int* sequence);
int* sequence;

 /* pointer to integer array where beeper sequence resides */

example call int two_beeps[]= { 19, 10, 0, 10, 19, 10, 0, 0 };
on_beeper(two_beeps);

description The on_beeper function assigns a beeper sequence to instruct how the
beeper activates. If there is a beeper sequence already in progress, the
newly assigned beeper sequence will override the old one.

returns The on_beeper function has no return value.

 21

2.4 Calendar

This section describes the calendar manipulation routines. The system date and time are kept
by the calendar chip , and they can be retrieved from or set to the calendar chip by the
get_time and set_time functions. A backup rechargeable NiCd battery keeps the calendar
chip running even when power is turned off.

Note that the system time variable sys_msec{xe "sys_msec"}, and sys_sec is maintained by
CPU timers and has nothing to do with this calendar chip. Accuracy of these two time
variables depends on the CPU clock and is not suitable for precise time manipulation. Also,
they are reset to 0 upon power up.

2.4.1 Timer Adjustment

The calendar chip can be fine tuned to compensate for a fast or slow clock. This is an
outstanding feature for those applications which need punctual system time such as a
time/clock application. The tuning of the calendar chip is done by modifying the value of the
trimming register of the calendar chip. The adjust_timer function can be used to modify the
value of the trimming register.

2.4.2 Trimming Register

The frequency of the calendar chip can be tuned in units of ppm via a digital trimming register.
The trimming range is from 0 to 255 ppm. The bigger the value of the trimming register the
slower the calendar chip runs. For instance, if the calendar chip is 1 second slow in one day
then the value of the trimming register should decrease 12 to correctly adjust the calendar
chip. During system initialization, this register is set to 186.

1 sec/ 1 day = 1000000 / (24 hours X 60 min X 60 sec) = 11.57 ppm ~= 12 ppm

2.4.3 Leap Year

The calendar chip automatically handles the leap year. The year field set to the calendar chip
must be in four-digit year.

 22

adjust_timer
purpose Modify the value of the trimming register of the calendar chip.

syntax int adjust_timer(int offset);

int offset; /* the amount of modification made to the trimming register */

example call adjust_timer(12);

description The adjust_timer function modifies the value of the trimming register of
the calendar chip with the amount specified in the argument offset. If
offset is positive, the adjust_timer function increases the trimming
register by this value and thus slows down the calendar chip. If offset is
negative, the adjust_timer function decreases the trimming register by
this value and thus makes the calendar chip runs faster. If offset is 0, no
modification is made to the trimming register.

returns The adjust_timer function returns the value of the trimming register after
the operation. If the calendar chip malfunctions, the return value will be 0
to indicate error.

comments Since the value allowed for the trimming register is from 0 to 255.
Decreasing the value of trimming register down to 0 is possible but
should be avoided because a trimming register with a value of 0 also
indicates error in the return value of the adjust_timer function.

DayOfWeek
purpose Get the day of the week information.

syntax int DayOfWeek();

example call day = DayOfWeek();

description The DayOfWeek function returns the day of week information based on
current date.

returns The DayOfWeek function returns an integer indicating the day of week
information. A value of 1 to 6 represents Monday to Saturday
accordingly. And a value of 7 indicates Sunday.

get_time
purpose Get current date and time.

syntax int get_time(char*cur_time);
char* cur_time; /*pointer of character array where the date

 and time will be copied to */

example call get_time(system_time);

description The get_time function reads current date and time from the calendar chip
and copies them to a character array specified in the argument cur_time.
The character array cur_time allocated must have a minimum of 15
bytes to accommodate the date, time, and the string terminator. The
format of the system date and time is listed below.

"YYYYMMDDhhmmss"
where YYYY : year, 4 digits

MM : month, 2 digits
DD : day, 2 digits
hh : hour, 2 digits

 23

mm : minute, 2 digits
ss : second, 2 digits

returns Normally the get_time function always returns an integer value of 1. If
the calendar chip malfunctions, the get_time function will then return 0 to
indicate error.

get_time_ms
purpose Get current time to tens of millisecond precision.

syntax int get_time_ms(char*cur_time);
char* cur_time; /*pointer of character array where the date

 and time will be copied to */

example call get_time_ms(now_time);

description The get_time_ms function reads current time down to tens of millisecond
precision from the calendar chip and copies them to a character array
specified in the argument cur_time. The character array cur_time
allocated must have a minimum of 9 bytes to accommodate the time and
the string terminator. The format of the system date and time is listed
below.

"hhmmssnn"
where hh : hour, 2 digits

mm : minute, 2 digits
ss : second, 2 digits
nn : tens of millisecond, 2 digits

returns Normally the get_time_ms function always returns an integer value of 1.
If the calendar chip malfunctions, the get_time_ms function will then
return 0 to indicate error.

set_time
purpose Set new date and time to the calendar chip.

syntax int set_time(char* new_time);
char* new_time;

example call set_time("19980105125800"); /* JAN 5, 1998 12:58:00 */

description The set_time function set a new system date and time specified in the
argument new_time to the calendar chip. The character string new_time
must have the following format,

"YYYYMMDDhhmmss"
where YYYY : year, 4 digits

MM : month, 2 digits, 1-12
DD : day, 2 digits, 1-31
hh : hour, 2 digits, 0-23

mm : minute, 2 digits, 0-59
ss : second, 2 digits, 0-59

returns Normally the set_time function always returns an integer value of 1. If the
calendar chip malfunctions, the set_time function will then return 0 to
indicate error. Also, if the format is illegal (e.g. set hour to 25), the
operation is simply denied and the time is not changed.

 24

2.5 File Manipulation

This section describes the file manipulation routines provided. These routines can help to
make the manipulation of the transaction data and the implementation of data base system
very easy. Although the programmer can device his / her own ways of manipulating the data
by declaring some huge arrays, the resulting program will become bigger and harder to be
debugged, and will also be less efficient in execution speed and memory usage.

There are two different types of file structures supported. The first one is a sequential file
structure, which is much like the ordinary sequential file but is modified to support FIFO
structure. We call this type of files as DAT files. The DAT files are usually used to store
transaction data.

Another file structure supported is an index sequential file structure. Table look-up and report
generation is easily done by use of the index sequential file routines. There are actually two
types of files in this file structure. One is the file that stores the data records (data members),
and the other is the associate key (index) file. These two types of files are called DBF files
and IDX files respectively. We will talk about these two file structures in detail later in this
section.

Please note that, not all of the routines described in this section apply to both types of files. In
the paragraph of each routine description, we have listed the target file types that the routine
under description applies.

2.5.1 File System

On 520 terminal, there is an on-board 128K bytes base memory (SRAM). This is the place
where all the system parameters, program variables, and program stack reside. User may as
well install an optional memory board inside 520. The memory size of this optional memory
board can be 128K bytes up to 2M bytes. The file system (which includes file allocation table,
directory, and file data) resides on the memory board, if a memory board is installed. But if the
memory board does not exist, the file system will be on the base memory.

When 520 is started, the 520 Kernel will try to find the file system on the optional memory
board. If a memory board is installed and the 520 Kernel fails to find the file system, the 520
Kernel will initialize the memory board and setup a file system on it. If the 520 Kernel detects
that there is no memory board installed, then it will try to find the file system on the base
memory. A new file system will be setup on the base memory, if 520 Kernel can not find it.

For the file system, the memory board always has a higher preference over the base memory.
The 520 Kernel will always assume the file system is on the memory board (if it exist), even if
there is already a file system on the base memory. Under this case, however, the file system
on the base memory is remained untouched.

2.5.2 File Name

A file name is a null terminated character string of at least 1 and up to 8 characters (not
including the terminating null), which is used to identify each file in the system. There is no file
extension as in MS-DOS operation system. The file name is case sensitive in identifying files
in the system. It is given to each file when a file is created. If a file name specified is more
than 8 characters, it will be truncated to 8 characters. The file name can be changed later by
the rename function.

2.5.3 File Handle (File Descriptor)

File handles are used to identify files after files are opened. Most of the file manipulation
functions needs file handles instead of file names when specifying target files. A file handle is
a positive integer (excludes 0) returned from system when a file is created or opened.
Subsequent file operation can then use the file handle to identify the file.

 25

2.5.4 Error Code

There is a system parameter “fErrorCode ”, which indicates the result of the last file
manipulation routine executed. A value other than 0 indicates error. This error code can be
fetched by referencing the variable fErrorCode, or by calling the read_error_code function.

2.5.5 Directory

The file system of 520 does not support tree-like directory structure. That is, no sub-directory
can be created. The maximum number of files can exist in the system is limited to 32 files
(includes all DAT files, DBF files, and their associate IDX files). The file directory information
can be fetched by calling filelist routine.

2.5.6 DAT Files

The DAT files have a sequential file structure. All the functions that are needed to manipulate
sequential files are included in this library. Besides the ordinary sequential file manipulation
routines, there are some special routines which can support FIFO data structure.

The data at the beginning of a DAT file can be removed from the DAT file by calling the
delete_top or delete_topln function. The new file top (beginning) position, the file pointer
position, and the size of the DAT file will be adjusted accordingly after calling either of these
functions. The append and appendln functions can write data directly to the EOF (end of file)
position, no matter where the file pointer points to. That is, the file pointer position is not
changed after calling these functions.

By use of the four functions mentioned above, the FIFO data structure can be easily
implemented and this is usually the way to handle the transaction data in real time system
(the host computer keeps reading and removing data from top of file, and new data are
written to the bottom at the same time).

2.5.7 DBF Files and IDX Files

The DBF files and the IDX files form the platform of the data base system. A DBF file has a
fixed record length structure. This is the file that stores the data records (members). Whereas,
the associate IDX files are the files that keep the information of the position of each record
stored in the DBF file, but they are re-arranged (sorted) according to some specific key
values.

A library would be a good example to illustrate how DBF and IDX file work. When you are
trying to find a specific book in a library, you always start from looking into indexes. The book
can be found by looking into the index of book title , writer , publisher , ISBN number , …etc.
All these indexes are sorted in ascending order for easy lookup according to some specific
information of books (book title, writer, publisher, ISBN number, …). When the book is found
in the index, it will tell you where the book is actually kept.

As you can see, the books kept in the library are analogous to the data records stored in the
DBF file, and the various indexes are just its associate IDX files. Some information in the data
records (the book title, writer, publisher, and ISBN number) is used to create the IDX files.

Each DBF file can have at most 8 associate IDX files, and each of them is identified by its key
(index) number. The key number is assigned by user program when the IDX file is created.
The valid key numbers are from 1 to 8.

Data records are not fetched directly from the DBF file but rather through associate IDX files.
The value of file pointers of the IDX files (index pointers) does not represent the address of
the data records stored in the DBF file. It indicates the sequence number of the specific data
record in the IDX file.

 26

access
target file type DAT DBF

purpose Check for file existence.

syntax int access(char* filename);
char* filename; /* file name of the file being checked */

example call if (access("data1")) puts("data1 exist!\n");

description Check if the file specified by filename exists. If filename exceeds 8
characters, it will be truncated to 8 characters.

returns If the file specified by filename exist, access returns an integer value of
1, 0 otherwise. In case of error, access will return an integer value of -1
and an error code is set to the global variable fErrorCode to indicate the
error condition encountered. Possible error codes and their interpretation
are listed below.

Error Code Interpretation
1 filename is a NULL string.

add_member
target file type DBF

purpose Add a data record (member) to a DBF file.

syntax int add_member(int DBF_fd, char* member);
int DBF_fd; /* file handle of target DBF file */
char* member; /* pointer to a character array from where

 the added member is copied */

example call add_member(DBF_fd, member);

description The add_member function adds a member specified by the argument
member to a DBF file whose file handle is DBF_fd and add index entries
to all the IDX file associated to it. If the length of the added member is
greater than the length defined for the DBF file (member_len in
create_DBF function), the member will be truncated to that length.

returns If add_member successfully adds the member, it returns an integer value
of 1. In case of error, add_member will return an integer value of 0 and
an error code is set to the global variable fErrorCode to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
 2 File specified by DBF_fd does not exist.
 4 File specified by DBF_fd is not a DBF file.
 7 Invalid file handle
 8 File not opened
10 No free file space for adding member.

append
target file type DAT

purpose Write a specified number of bytes to bottom (end-of-file position) of a
DAT file.

syntax int append(int fd, char* buffer, int count);
int fd; /* file handle of the target DAT file */

 27

char* buffer; /* pointer to array of characters representing data to be
 written */

int count; /* number of bytes to be written */

example call append(fd, “1234567890”, 10);

description The append function writes the number of bytes specified in the
argument count from the character array buffer to the bottom of a DAT
file whose file handle is fd. Writing of data starts at the end-of-file
position of the file, and the file pointer position is unaffected by the
operation. The append function will automatically extend the file size of
the file to hold the data written.

returns The append function returns the number of bytes actually written to the
file. In case of error, append returns an integer value of -1 and an error
code is set to the global variable fErrorCode to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
 2 File specified by fd does not exist.
 4 File specified by fd is not a DAT file.
 7 Invalid file handle
 8 File not opened
 9 The value of count is negative.
10 No more free file space for file extension.

comments The maximum number of characters can be written is limited to 32767.

appendln
target file type DAT

purpose Write a null terminated character string to the bottom (end-of-file
position) of a DAT file.

syntax int appendln(int fd, char* buffer);
int fd; /* file handle of the target DAT file */
char* buffer; /* pointer to array of characters representing data to be

 written */

example call appendln(fd, data_buffer);

description The appendln function writes a null terminated character string from the
character array buffer to a DAT file whose file handle is fd. Characters
are written to the file until a null character (\0) is encountered. The null
character is also written to the file. Writing of data starts at the end-of-file
position. The file pointer position is unaffected by the operation. The
appendln function will automatically extend the file size of the file to hold
the data written.

returns The appendln function returns the number of bytes actually written to the
file (includes the null character). In case of error, appendln returns an
integer value of -1 and an error code is set to the global variable
fErrorCode to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
 2 File specified by fd does not exist.
 4 File specified by fd is not a DAT file.
 7 Invalid file handle
 8 File not opened
10 No more free file space for file extension.
11 Can not find string treminator in buf.

 28

comments The maximum number of characters can be written is limited to 32767.

chsize
target file type DAT

purpose Extends or truncates a DAT file.

syntax int chsize(int fd, long new_size);
int fd; /* file handle of the target DAT file */
long new_size; /* new length of file in bytes */

example call if (chsize(fd,0L)) puts("file truncated!\n");

description The chsize function truncates or extends the file specified by the
argument fd to match the new file length in bytes given in the argument
new_size. If the file is truncated, all data beyond the new file size will be
lost. If the file is extended, no initial value is filled to the newly extended
area.

returns If chsize successfully changes the file size of the specified DAT file, it
returns an integer value of 1. In case of error, chsize will return an
integer value of 0 and an error code is set to the global variable
fErrorCode to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
 2 File specified by fd does not exist.
 4 File specified by fd is not a DAT file.
 7 Invalid file handle
 8 File not opened
10 No more free file space for file extension.

close
target file type DAT

purpose Close a DAT file.

syntax int close(int fd);
int fd; /* file handle of the target DAT file */

example call if (close(fd)) puts("file closed!\n");

description Close a previously opened or created DAT file whose file handle is fd.

returns close returns an integer value of 1 to indicate success. In case of error,
close returns an integer value of 0 and an error code is set to the global
variable fErrorCode to indicate the error condition encountered. Possible
error codes and their interpretation are listed below.

Error Code Interpretation
 2 File specified by fd does not exist.
 4 File specified by fd is not a DAT file.
 7 Invalid file handle
 8 File not opened

close_DBF
target file type DBF

purpose Close DBF and its associated IDX file.

syntax int close_DBF(int DBF_fd);
int DBF_fd; /* file handle of the target DBF file */

 29

example call if (close_DBF(DBF_fd)) send_lcds("DBF file closed!\n");

description Close a previously opened or created DBF file whose file handle is
DBF_fd. The close_DBF function not only closes the specified DBF file
but also closes all the IDX files associated to it.

returns The close_DBF function returns an integer value of 1 to indicate
success. In case of error, close_DBF returns an integer value of 0 and
an error code is set to the global variable fErrorCode to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
 2 File specified by DBF_fd does not exist.
 4 File specified by DBF_fd is not a DBF file.
 7 Invalid file handle
 8 File not opened

create_DBF
target file type DBF

purpose Create a DBF file and get the file handle of the file for further processing.

syntax int create_DBF(char* filename, unsigned member_len);
char* filename; /* file name of the DBF file being created */
unsigned member_len; /* member (record) length of the DBF file */

example call if (fd = create_DBF("data1",64) > 0) puts("data1 created!\n");

description The create_DBF function creates a DBF file specified by filename and
gets the file handle of the file. A file handle is a positive integer (excludes
0) used to identify the file for subsequent file manipulations on the file.
The argument member_len supplied in the function call specifies the
maximum member length for the DBF file. Any members subsequently
added to this DBF file with length greater than member_len will be
truncated to this length. If filename exceeds 8 characters, it will be
truncated to 8 characters.

returns If create_DBF successfully creates the DBF file, it returns the file handle
of the file being created. In case of error, create_DBF will return an
integer value of -1 and an error code is set to the global variable
fErrorCode to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
 1 filename is a NULL string.
 6 Can't create file. Because the maximum

number
of files allowed in the system is exceeded.

 9 Illegal argument : member_len
12 File specified by filename already exists.

create_ index
target file type DBF

purpose Create an IDX file of a DBF file.

Syntax int create_index(int DBF_fd, int key_number, int key_offset, int key_len);
int DBF_fd; /* file handle of a DBF file which the target index

 file associated to */
int key_number; /*key number of the index file to be created */
int key_offset; /* the byte offset address in member where the key

 30

 value begins */
int key_len; /* the length (size of) of key value for the index */

example call create_index(DBF_fd,1,0,10);

description The create_index function creates an IDX file specified by the argument
key_number which is associated to a DBF file whose file handle is
DBF_fd. The key value field for the index is specified by the argument
key_offset and key_len. The argument key_offset specifies the byte
offset address where the key value in a member begins. And key_len
specifies the length of the key value. The key field defined by key_offset
and key_len should be within the member as defined by member_len in
create_DBF function. That is, key_offset plus key_len should not greater
than member_len. The create_index function can only be called before
any members are added to the DBF file. That is, when the DBF file is
empty (no members exist). If any member should exist in the DBF file,
rebuild_index should be used instead.

returns If create_index successfully creates an IDX file, it returns an integer
value of 1. In case of error, create_index will return an integer value of 0
and an error code is set to the global variable fErrorCode to indicate the
error condition encountered. Possible error codes and their interpretation
are listed below.

Error Code Interpretation
 2 File specified by DBF_fd does not exist.
 4 File specified by DBF_fd is not a DBF file.
 6 Can't create file. Because the maximum

number
of files allowed in the system is exceeded.

 7 Invalid file handle
 8 File not opened
13 Illegal value in argument key_number.
17 Illegal value in argument key_offset,and/or

key_len.
18 DBF file specified by DBF_fd is not empty.
19 IDX file specified by key_number already

exists.

delete_member
target file type DBF

purpose Delete a member of a DBF file.

syntax int delete_member(int DBF_fd, int key_number);
int DBF_fd; /* file handle of target DBF file */
int key_number; / * key number of the index file whose index pointer

 pints to the target member */

example call delete_member(DBF_fd, 1);

description The delete_member function deletes the member pointed by the index
pointer of an IDX file whose key number is specified in the argument
key_number. The DBF file which the IDX file associates to is specified in
the argument DBF_fd.

returns If delete_member successfully deletes the member, it returns an integer
value of 1. In case of error, delete_member will return an integer value of
0 and an error code is set to the global variable fErrorCode to indicate
the error condition encountered. Possible error codes and their
interpretation are listed below.

 31

Error Code Interpretation
 2 File specified by DBF_fd does not exist.
 4 File specified by DBF_fd is not a DBF file.
 7 Invalid file handle
 8 File not opened
13 Illegal value in argument key_number.
14 The IDX file specified by key_number does

not exist.
16 There are no members in the DBF file.

delete_top
target file type DAT

purpose Remove a specified number of bytes from top (beginning-of-file position)
of a DAT file.

syntax int delete_top(int fd, int count);
int fd; /* file handle of the target DAT file */
int count; /* number of bytes to be removed */

example call delete_top(fd, 80);

description The delete_top function removes the number of bytes specified in the
argument count from a DAT file whose file handle is fd. Removing of
data starts at the beginning-of-file position of the file. The file pointer
position is adjusted accordingly by the operation. For instance, if initially
the file pointer points to the tenth character , after removing 8 character
from the file, the new file pointer will points to the second character of the
file. The delete_top function will resize the file size automatically.

returns The delete_top function returns the number of bytes actually removed
from the file. In case of error, delete_top returns an integer value of -1
and an error code is set to the global variable fErrorCode to indicate the
error condition encountered. Possible error codes and their interpretation
are listed below.

Error Code Interpretation
 2 File specified by fd does not exist.
 4 File specified by fd is not a DAT file.
 7 Invalid file handle
 8 File not opened
 9 The value of count is negative.

delete_topln
target file type DAT

purpose Remove a null terminated character string from the top (beginning-of-file
position) of a DAT file.

syntax int delete_topln(int fd);
int fd; /* file handle of the target DAT file */

example call delete_topln(fd);

description The delete_topln function removes a line terminated by a null character
from a DAT file whose file handle is fd. Characters are removed from the
file until a null character (\0) or end-of-file is encountered. The null
character is also removed from the file. Removing of data starts at the
top (beginning-of-file position) of the file, and the file pointer position is
adjusted accordingly. The delete_topln function will resize the file size
automatically.

 32

returns The delete_topln function returns the number of bytes actually removed
from the file (includes the null character). In case of error, delete_topln
returns an integer value of -1 and an error code is set to the global
variable fErrorCode to indicate the error condition encountered. Possible
error codes and their interpretation are listed below.

Error Code Interpretation
 2 File specified by fd does not exist.
 4 File specified by fd is not a DAT file.
 7 Invalid file handle
 8 File not opened

eof
target file type DAT

purpose Check if file pointer of a DAT file reaches end of file.

syntax int eof(int fd);
int fd; /* file handle of the target DAT file */

example call if (eof(fd)) puts("end of file reached!\n");

description The eof function checks if the file pointer of the DAT file whose file
handle is specified in the argument fd, points to end-of-file.

returns The eof function returns an integer value of 1 to indicate an end-of-file
and a 0 when not. In case of error, eof returns an integer value of -1 and
an error code is set to the global variable fErrorCode to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
 2 File specified by fd does not exist.
 4 File specified by fd is not a DAT file.
 7 Invalid file handle
 8 File not opened

filelength
target file type DAT

purpose Get file length information of a DAT file.

syntax long filelength(int fd);
int fd; /* file handle of the target DAT file */

example call data_size = filelength(fd);

description The filelength function returns the size in number of bytes of the DAT file
whose file handle is specified in the argument fd.

returns The long integer value returned by filelength is the size of the DAT file in
number of bytes. In case of error, filelength returns a long value of -1L
and an error code is set to the global variable fErrorCode to indicate the
error condition encountered. Possible error codes and their interpretation
are listed below.

Error Code Interpretation
 2 File specified by fd does not exist.
 4 File specified by fd is not a DAT file.
 7 Invalid file handle
 8 File not opened

 33

filelist
purpose Get file directory information.

syntax int filelist(char* dir);
char* dir; /* pointer to a character array where the file directory

 information is copied to */

example call total_file = filelist(dir);

description The filelist function copies the file name, file type, and file size
information (separated by a blank character) of all files in existence into
a character array specified in the argument dir.

returns The filelist function returns the number of files currently exist in the
system.

get_member
target file type DBF

purpose Read the member pointed by the index pointer.

syntax int get_member(int DBF_fd, int key_number, char* buffer);
int DBF_fd; /* file handle of a DBF file which the target index

 file associated to */
int key_number; /* key number of the target index file
char* buffer; /* pointer to a character array where the member is

 copied to */

example call if (get_member(DBF_fd,1,buffer) == 0) puts(buffer);

description The get_member function copies the member pointed to by a index
pointer to a character array specified in the argument buffer. The IDX file
concerned is specified in the argument key_number which is associated
to a DBF file whose file handle is DBF_fd.

Returns The get_member function returns an integer value of 1 to indicate
success. In case of error, get_member returns an integer value of 0 and
an error code is set to the global variable fErrorCode to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
 2 File specified by DBF_fd does not exist.
 4 File specified by DBF_fd is not a DBF file.
 7 Invalid file handle
 8 File not opened
13 Illegal value in argument key_number.
14 The IDX file specified by key_number does

not
exist.

16 There are no members in the DBF file.

has_member
target file type DBF

purpose Check if a specific member exist in an IDX file.

syntax int has_member(int DBF_fd, int key_number, char* key_value);
int DBF_fd; /* file handle of a DBF file which the target index

 file associated to */
int key_number; /* key number of the target index file */

 34

char* key_value; /* pointer of a character array which is used to
 identify a specific member */

example call if (has_member(DBF_fd,1,"WANG"))
 puts("WANG is on the name list!\n");

description The has_member function tries to locate a member which matches the
key value specified in the argument key_value in an IDX file
key_number. The IDX file is associated to a DBF file whose file handle is
specified in the argument DBF_fd. If there is a complete match to the
key_value , the index pointer will point to the first of all matches. In case
there are several members with the same key value, the user can then
check each member sequentially from the member pointed by the index
pointer to find the desired member. If has_member does not find a
complete match in the index, the index pointer will still point to the first
member with key value greater than key_value specified.

returns The has_member function returns an integer value of 1 to indicate a
complete match in key value has been found, 0 if not. In case of error,
has_member returns an integer value of -1 and an error code is set to
the global variable fErrorCode to indicate the error condition
encountered. Possible error codes and their interpretation are listed
below.

Error Code Interpretation
 2 File specified by DBF_fd does not exist.
 4 File specified by DBF_fd is not a DBF file.
 7 Invalid file handle
 8 File not opened
13 Illegal value in argument key_number.
14 The IDX file specified by key_number does

not exist.

lseek
target file type DAT

purpose Move file pointer of a DAT file to a new position.

syntax long lseek(int fd, long offset, int origin);
int fd; /* file handle of the target DAT file */
long offset; /* offset of new position (in bytes) from origin */
int origin; /* constant indicating the position from where to offset */

example call lseek(fd, 512L, 0); /* skip 512 bytes */

description The lseek function moves the file pointer of a DAT file whose file handle
is specified in the argument fd to a new position within the file. The new
position is specified with an offset byte address to a specific origin. The
offset byte address is specified in the argument offset which is a long
integer. There are 3 possible values for the argument origin. The values
and their interpretations are listed below.

Value of origin Interpretation
 1 beginning of file
 0 current file pointer position
-1 end of file

returns When successful, lseek returns the new byte offset address of the file
pointer from the beginning of file. In case of error, lseek returns a long
value of -1L and an error code is set to the global variable fErrorCode to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

 35

Error Code Interpretation
 2 File specified by fd does not exist.
 4 File specified by fd is not a DAT file.
 7 Invalid file handle
 8 File not opened
 9 Illegal origin value.
15 New position is beyond end-of-file.

lseek_DBF
target file type DBF

purpose Move index pointer of an IDX file to a new position.

syntax long lseek_DBF(int DBF_fd, int key_number, long offset, int origin);
int DBF_fd; /* file handle of a DBF file which the target index file

 associated to */
int key_number; /* key number of the target index file */
long offset; /* offset of new position, sequence number from origin */
int origin; /* constant indicating the position from where to offset */

example call lseek_DBF(DBF_fd, 1, 1L, 0); /* move to next member */

description The lseek_DBF function moves the index pointer of a INDEX file which is
specified in the argument key_number to a new position. The index file is
associated to a DBF file whose file handle is in the argument DBF_fd.
The new position is specified with an offset sequence address to a
specific origin. The offset rank address is specified in the argument offset
which is a long integer. There are 3 possible values for the argument
origin. The values and their interpretations are listed below.

Value of origin Interpretation
 1 first index of index file
 0 current index pointer position
-1 last index of index file

returns When successful, lseek_DBF returns the new sequence position that the
index pointer points to. In case of error, lseek_DBF returns a long value
of -1L and an error code is set to the global variable fErrorCode to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
 2 File specified by DBF_fd does not exist.
 4 File specified by DBF_fd is not a DBF file.
 7 Invalid file handle
 8 File not opened
 9 Illegal origin value.
13 Illegal value in argument key_number.
14 The IDX file specified by key_number does

not exist.
15 New position is beyond end-of-file.

member_in_DBF
target file type DBF

purpose Determine how many members exist in a DBF file.

syntax long member_in_DBF(int DBF_fd);
int DBF_fd; /* file handle of the target DBF file */

example call total_member = member_in_DBF(DBF_fd);

 36

description The member_in_DBF function returns the number of member in a DBF
file whose file handle is specified in the argument DBF_fd.

returns The long integer value returned by member_in_DBF is the number of
members exist in the DBF file. In case of error, member_in_DBF returns
a long value of -1L and an error code is set to the global variable
fErrorCode to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
 2 File specified by DBF_fd does not exist.
 4 File specified by DBF_fd is not a DBF file.
 7 Invalid file handle
 8 File not opened

open
target file type DAT

purpose Open a DAT file and get the file handle of the file for further processing.

Syntax int open(char* filename);
char* filename; /* file name of file to be opened */

example call if (fd = open("data1") > 0) puts("data1 opened!\n");

description The open function opens a DAT file specified by filename and gets the
file handle of the file. A file handle is a positive integer (excludes 0) used
to identify the file for subsequent file manipulations on the file. If the file
specified by filename does not exist, it will be created first. If filename
exceeds 8 characters, it will be truncated to 8 characters long. After the
file is opened, the file pointer points to the beginning of file.

returns If open successfully opens the file, it returns the file handle of the file
being opened. In case of error, open will return an integer value of -1 and
an error code is set to the global variable fErrorCode to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
1 filename is a NULL string.
4 File specified by filename is not a DAT file.
5 File specified by filename is already opened.
6 Can't create file. Because the maximum

number of files allowed in the system is
exceeded.

open_DBF
target file type DBF

purpose Open a DBF file and get the file handle of the file for further processing.

syntax int open_DBF(char* filename);
char* filename; /* file name of file to be opened */

example call if (fd = open_DBF("data1") > 0) puts("data1 opened!\n");

description The open_DBF function opens a DBF file specified by filename and gets
the file handle of the file. A file handle is a positive integer (excludes 0)
used to identify the file for subsequent file manipulations on the file. The
open_DBF function will also open all the index (key) files associated to
the DBF file being opened simultaneously. If filename exceeds 8
characters, it will be truncated to 8 characters long. After the DBF file is

 37

opened, the index pointers of all the associated index (key) files point to
the beginning of the respective index.

returns If open_DBF successfully opens the DBF file, it returns the file handle of
the file being opened. In case of error, open_DBF will return an integer
value of -1 and an error code is set to the global variable fErrorCode to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
1 filename is a NULL string.
2 File specified by filename does not exist.
4 File specified by filename is not a DBF file.
5 File specified by filename is already opened.

read
target file type DAT

purpose Read a specified number of bytes from a DAT file.

syntax int read(int fd, char* buffer, unsigned count);
int fd; /* file handle of the target DAT file */
char* buffer; /* pointer to array of characters where the read data

 will be placed */
unsigned count; /* number of bytes to be read */

example call if ((bytes_read = read(fd, buffer,80)) = = -1)
 puts("read error!\n");

description The read function copies the number of bytes specified in the argument
count from the DAT file whose file handle is fd to the array of characters
buffer. Reading starts at the current position of the file pointer, which is
incremented accordingly when the operation is completed.

returns The read function returns the number of bytes actually read from the file.
In case of error, read returns an integer value of -1 and an error code is
set to the global variable fErrorCode to indicate the error condition
encountered. Possible error codes and their interpretation are listed
below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened

file.

comments Since read returns an signed integer, the return value should be
converted to unsigned int when reading more than 32,767 bytes of data
from a file or the return value will be negative. Because the number of
bytes to be read is specified in an unsigned integer argument, you could
theoretically read 65,535 bytes at a time. But 65,535 (or FFFFh) also
means -1 in signed representation, so when reading 65,535 bytes the
return value indicates an error. The practical maximum then is 65,534.

read_error_code
purpose Get the value of the global variable fErrorCode.

syntax int read_error_code();

example call if (read_error_code() = = 2) puts("File not exist!\n");

description The read_error_code function gets the value of the global variable
fErrorCode and returns the value to the calling program. The
programmer can use this function to get the error code of the file

 38

manipulation routine previously called. However, the global variable
fErrorCode can be directly accessed without making a call to this
function.

returns The read_error_code function returns the value of the global variable
fErrorCode.

readln
target file type DAT

purpose Read a line terminated by a null character from a DAT file.

syntax int readln(int fd, char* buffer, unsigned max_count);
int fd; /* file handle of the target DAT file */
char* buffer; /* pointer to array of characters where the read line will

 will be placed */
unsigned max_count; /* maximum number of bytes to be read before

 null character encountered */
example call readln(fd, buffer,80);

description The readln function reads a line from the DAT file whose file handle is fd
and stores the characters in the character array buffer. Characters are
read until end-of-file encountered, a null character (\0) encountered, or
the total number of characters read equals the number specified in
max_count. The readln function then returns the number of bytes
actually read from the file. The null character (\0) is also counted if read.
If the readln function completes its operation not because a null
character is read, there will be no null character stored in buffer. Reading
starts at the current position of the file pointer, which is incremented
accordingly when the operation is completed.

returns The readln function returns the number of bytes actually read from the
file (includes the null character if read). In case of error, readln returns an
integer value of -1 and an error code is set to the global variable
fErrorCode to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened

file.

comments Since readln returns an signed integer, the return value should be
converted to unsigned int when reading more than 32,767 bytes of data
from a file or the return value will be negative. Because the number of
bytes to be read is specified in an unsigned integer argument, you could
theoretically read 65,535 bytes at a time. But 65,535 (or FFFFh) also
means -1 in signed representation, so when reading 65,535 bytes the
return value indicates an error. The practical maximum then is 65,534.
The argument max_count is usually set to a value which equals the size
of the character array buffer to avoid string overflow.

cautions Under some situations (end-of-file encountered or max_count reached),
there might not be a null character exist in buffer.

 39

rebuild_index
target file type DBF

purpose Rebuild an IDX file of a DBF file.

syntax int rebuild_index(int DBF_fd, int key_number, int preference_index,
int key_offset, int key_len);

int DBF_fd; /* file handle of a DBF file which the target
 index file associated to */

int key_number; /* key number of the index file to be created */
int preference_index; /* key number of the preference index file, see

 description below */
int key_offset; /* the byte offset address in member where the

 key value begins */
int key_len; /* the length (size of) of key value for the index */

example call rebuild_index(DBF_fd,1,0,10);

description The rebuild_index function rebuilds or creates an IDX file specified by
the argument key_number which is associated to a DBF file whose file
handle is DBF_fd. If the index file specified by key_number exists, the
rebuild_index function will first delete it. If the index does not exist,
rebuild_index will directly create and rebuild the index. The key value
field for the index is specified by the argument key_offset and key_len.
The argument key_offset specifies the byte offset address where the key
value in a member begins. And key_len specifies the length of the key
value. The key field defined by key_offset and key_len should be within
the member as defined by member_len in create_DBF function. That is,
key_offset plus key_len should not greater than member_len.

The argument preference_index specifies an index file from which the
rebuild_index function takes as the input sequence for building index.
This function is quite useful when generating reports. For instance, if a
report is to be generated by the sequence of date, department, and ID
number, this is easily done by first rebuilds the ID number index and then
rebuilds the department index with ID number as the preference index,
and finally rebuilds the date index with department index as the
preference index. The resulting member sequence in the date index will
be in date, department, and ID number. The preference_index has no
effect on the following added members. It takes effect only when
rebuilding index. When there is no preferred index desired,
preference_index should have the value of 0. The preferred sequence
will be the original member sequence in the DBF file so done.

returns If rebuild_index successfully creates / rebuilds an IDX file, it returns an
integer value of 0. In case of error, rebuild_index will return an integer
value of -1 and an error code is set to the global variable fErrorCode to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DBF file.
 6 Can't create file. Because the maximum number

of files allowed in the system is exceeded.
 8 DBF_fd is not a file handle of a previously opened

file.
9 Illegal value in argument key_offset,and/or

key_len.
10 No more free file space for rebuilding index.
11 Illegal value in argument key_number.
18 Illegal value in argument preference_index.

 40

remove
target file type DAT DBF

purpose Delete file.

syntax int remove(char* filename);
char* filename; /* file name of file to be deleted */

example call if (remove("data1")) puts("data1 deleted!\n");

description Delete the file specified by filename. If filename exceeds 8 characters, it
will be truncated to 8 characters long. If the file to be deleted is a DBF
file, the DBF file and all the index (key) files associated to it will be
deleted altogether.

returns f remove deletes the file successfully, it returns an integer value of 1. In
case of error, remove will return an integer value of 0 and an error code
is set to the global variable fErrorCode to indicate the error condition
encountered. Possible error codes and their interpretations are listed
below.

Error Code Interpretation
1 filename is a NULL string.
2 File specified by filename does not exist.

remove_ index
target file type DBF

purpose Delete an index file.

syntax int remove_index(int DBF_fd, int key_number);
int DBF_fd; /* file handle of a DBF file which the target index

 file associated to */
int key_number;/* key number of the target index file */

example call if (remove_index(DBF_fd, 1)) puts("index removed!\n");

description The remove_index function deletes the index file specified in the
argument key_number which is associated to a DBF file whose file
handle is DBF_fd.

returns The remove_index function returns an integer value of 1 if it successfully
deletes the index file. In case of error, remove_index returns an integer
value of 0 and an error code is set to the global variable fErrorCode to
indicate the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
 4 File specified by fd is not a DBF file.
 8 fd is not a file handle of a previously opened

file.
11 Index file specified by key_number does not

exist.

rename
target file type DAT DBF

purpose Change file name of an existing file.

syntax int rename(char* old_filename, char* new_filename);
char* old_filename; /* file name of file to be renamed */
char* new_filename; /* new file name desired */

example call if (rename("data1", "text1")) puts("data1 renamed!\n");

 41

description Change the file name of the file specified by old_filename to
new_filename. If either old_filename or new_filename exceeds 8
characters, it will be truncated to 8 characters long. If the file specified by
old_filename is a DBF file, the file name of the DBF file and all the index
(key) files associated to it will be changed to new_filename altogether.

returns If rename successfully changes the file name, it returns an integer value
of 1. In case of error, rename will return an integer value of 0, and an
error code is set to the global variable fErrorCode to indicate the error
condition encountered. Possible error codes and their interpretation are
listed below.

Error Code Interpretation
1 Either old_filename or new_filename is a

NULL string.
2 File specified by old_filename does not exist.
3 A file with file name new_filename already

exists.

tell
target file type DAT

purpose Get file pointer position of a DAT file.

syntax long tell(int fd);
int fd; /* file handle of the target DAT file */

example call current_position = tell(fd);

description The tell function returns the current file pointer position of the DAT file
whose file handle is specified in the argument fd. The file pointer position
is expressed in number of bytes from the beginning of file. For instance,
if the file pointer points to the beginning of file, the file pointer position will
be 0L.

returns The long integer value returned by tell is the current file pointer position
in file. In case of error, tell returns a long value of -1L and an error code
is set to the global variable fErrorCode to indicate the error condition
encountered. Possible error codes and their interpretation are listed
below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened

file.

tell_DBF
target file type IDX

purpose Get index pointer position of an IDX file.

syntax long tell_DBF(int DBF_fd, int key_number);
int DBF_fd; /* file handle of the target DAT file */
int key_number;/* key number of the target index file */

example call rank_number = tell_DBF(DBF_fd, 1);

description The tell_DBF function returns the current index pointer position of the
IDX file which is specified in the argument key_number. The IDX file is
associated to a DBF file whose file handle is specified in the argument
DBF_fd. The index pointer position is expressed in rank number in the
IDX file. For instance, if the index pointer points to the first index, the
index pointer position will be 1L.

 42

returns The long integer value returned by tell_DBF is the current index pointer
position in ranks in file. In case of error, tell_DBF returns a long value of -
1L and an error code is set to the global variable fErrorCode to indicate
the error condition encountered. Possible error codes and their
interpretation are listed below.

Error Code Interpretation
 4 File specified by DBF_fd is not a DAT file.
 8 DBF_fd is not a file handle of a previously

opened file.
11 Index file specified by key_number does not

exist.

write
target file type DAT

purpose Write a specified number of bytes to a DAT file.

syntax int write(int fd, char* buffer, unsigned count);
int fd; /* file handle of the target DAT file */
char* buffer; /* pointer to array of characters representing data to be

 written */
unsigned count; number of bytes to be written

example call write(fd, data_buffer, 1024);

description The write function writes the number of bytes specified in the argument
count from the character array buffer to a DAT file whose file handle is
fd. Writing of data starts at the current position of the file pointer, which is
incremented accordingly when the operation is completed. If the end-of-
file condition is encountered during the operation, the file will be
extended automatically to complete the operation.

returns The write function returns the number of bytes actually written to the file.
In case of error, write returns an integer value of -1 and an error code is
set to the global variable fErrorCode to indicate the error condition
encountered. Possible error codes and their interpretation are listed
below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened

file.
10 No more free file space for file extension.

writeln
target file type DAT

purpose Write a line terminated by a null character (\0) to a DAT file.

syntax int writeln(int fd, char* buffer);
int fd; /* file handle of the target DAT file */
char* buffer; /* pointer to array of characters representing data to be

 written */

example call writeln(fd, data_buffer);

description The writeln function writes a line terminated by a null character from the
character array buffer to a DAT file whose file handle is fd. Characters
are written to the file until a null character (\0) is encountered. The null
character is also written to the file. Writing of data starts at the current
position of the file pointer, which is incremented accordingly when the
operation is completed. If the end-of-file condition is encountered during

 43

the operation, the file will be extended automatically to complete the
operation.

returns The writeln function returns the number of bytes actually written to the
file (includes the null character). In case of error, writeln returns an
integer value of -1 and an error code is set to the global variable
fErrorCode to indicate the error condition encountered. Possible error
codes and their interpretation are listed below.

Error Code Interpretation
 4 File specified by fd is not a DAT file.
 7 fd is not a file handle of a previously opened

file.
 9 no null character found in buffer
10 No more free file space for file extension.

 44

2.6 Digital Input / Output

This section describes the digital Input / Output manipulation routines. There are four digital
input and four digital output on 520 (if the optional DIO board is installed). The four digital
input are numbered from 0 to 3, and the four digital output are numbered from 4 to 7.

get_di
purpose Read digital Input.

syntax int get_di(int di);
int di; /* digital input number from 0 to 3, depends on I/O board */

example call if (get_di(0)) send_lcds(DI0 is ON!\n");

returns 1, if photo-coupler is turned on, that is current flows through the LED.
0, otherwise.

set_dout
purpose Set the digital output

syntax void set_dout(int do, int mode, int duration);
int do; /* digital output number starts from 4 to 7 */
int mode; /* output mode */
int duration; /* duration */

example call set_dout(4,DOUT_ON,200); /* on digital output for 1 second then off */

description The set_dout sets the digital output points specified by do.
The duration specified in the argument duration is in units of 5
milisecond. That is, if a duration of 1 second is desired, a value of 200
should be assigned to the argument duration. A value of 0 in the
argument duration will keep the output stay in the specific state
indefinitely.

There are 3 possible output modes can be assigned to the argument
mode. Their values and interpretation are listed below.

output mode interpretation

DOUT_OFF Turn off the DO immediately for specific duration
and then go back on.

DOUT_ON Turn on the DO immediately for specific duration
and then go back off.

DOUT_FLASH Flash the DO with a specific period indefinitely.
The flashing period equals to 2 * duration.

returns none

 45

2.7 LED

Number of LEDs on 520 can be used to indicate the system status. They are listed as follows,

Name Number

LED_F1 12

LED_F2 8

LED_F3 4

LED_F4 0

LED_F5 13

LED_F6 9

LED_F7 5

LED_F8 1

LED_SHT 14

LED_GDRD1 16

LED_GDRD2 17

LED_RDY 18

set_led
purpose Set LED

syntax int set_led(int led, int mode, int duration);
int led; /* number of LED to be accessed */
int mode; /* activation mode */
int duration; /* duration in unit of 50 miliseconds */

example call set_led(LED_RDY, LED_FLASH, 20); /* set LED_RDY to flash for each
 1 second */

description 3 modes are supported,
LED_OFF : off for (duration X 0.05) seconds then on

LED_ON : on for (duration X 0.05) seconds then off

LED_FLASH : flash, on then off each for (duration X 0.05) seconds
then repeat

returns none

 46

2.8 Keypad

A scanning circuitry of 4 by 8 matrix is utilized on the 520 keypad. The background routine
constantly scans the keypad to see if any key was pressed. There is a keyboard buffer of size
32 bytes. However, if the buffer is full, the keys followed will be ignored. The C program must
constantly checks to see if any keystroke is available in the buffer.

clr_kb
purpose Clear the keyboard buffer.

syntax void clr_kb();

example call clr_kb();

description The clr_kb function clears the keyboard buffer. This function is
automatically called by the system program upon power up.

returns none

en_alpha
purpose Enable alphabet key stroke processing.

syntax void en_alpha();

example call en_alpha();

description The en_alpha function enables the alphabet key stroke processing. It is
disabled upon power on.

returns none

dis_alpha
purpose Disable alphabet key stroke processing.

syntax void dis_alpha();

example call dis_alpha();

description The dis_alpha function disables the alphabet key stroke processing. If
the alpha lock status is on prior to calling this function, it will become off
after calling this function.

returns none

get_alpha_enable_state
purpose Get the status of the alphabet key stroke processing.

syntax int get_alpha_enable_state();

example call state = get_alpha_enable_state();

description This routine gets the current status, enable/disable, of the alphabet key
stroke processing.

returns ALPHA_ENABLE, if the alphabet key stroke processing is enabled.
ALPHA_DISABLE, if disabled.

 47

get_alpha_lock_state
purpose Get alpha lock state information.

syntax int get_alpha_lock_state();

example call state = get_alpha_lock_state();

description This function returns an integer indicates the alpha lock status.

returns ALPHA_LOCK_ON, if alpha lock is on.
ALPHA_LOCK_OFF, if alpha lock is off.

getchar
purpose Get one key stroke from the keyboard buffer.

syntax char getchar();

example call c = getchar();
if (c >0) printf("Key %d pressed", c);
else printf("No key pressed");

description The getchar function reads one key stroke from the keyboard buffer and
then removes the key stroke from the keyboard buffer.

returns The getchar function returns the key stroke read from the keyboard
buffer. If the keyboard buffer is empty, a null character (0x00) is
returned. The keystroke returned is the ASCII code of the key being
pressed.

kbhit
purpose Check whether the keyboard buffer is empty.

syntax int kbhit();

example call for (;!kbhit();); /* wait till key pressed */

description The kbhit function checks if there is any character waiting to be read
from the keyboard buffer.

returns If the keyboard buffer is empty, the kbhit function returns an integer
value of 0, 1 if not.

peek_kb
purpose Get multiple key combination from the keypad.

syntax unsigned long peek_kb();

example call unsigned long keycode;
keycode = peek_kb();
printf("Keys %ld pressed", keycode);

description The peek_kb function disables the background scanning routines and
directly scans the keypad. An unsigned long integer is returned to show
up to 4 keys that are pressed at the same time. These scan codes are
stored in ascending order (higher byte with smaller scan codes). This is
used to get the special power-on code for diagnostic and/ or special
function and should not be used for normal operation.

returns An unsigned long integer is returned and each byte represents a scan
code. That is, up to 4 keys can be read simultaneously.

 48

set_alpha_lock
purpose Set alpha lock state.

syntax void set_alpha_lock(int state);

int state; /* alpha lock state to be set , 1/0 to turn on/off */

example call set_alpha_lock(1); /* on alpha lock */

description This routine turns on or off the alpha lock.

returns none

 49

2.9 External AT Keyboard

The external AT keyboard is supported on 520 for full alphanumeric keyboard entry and is
processed as following.

• The keys which have a corresponding ASCII code value are stored with the ASCII
code value when they are pressed.

• The Caps Lock key and the Shift keys are recognized and are automatically
processed.

• The Num Lock is always set to the on state.

• The Ctrl key and the Alt key are not supported.

• The function keys (F1 to F12) are mapped to the value 0x80 to 0x8b respectively.

• Up, down, right, and left keys are stored as 0x8c, 0x8d, 0x8e, and 0x8f respectively.

• Other keys that are not mentioned above are not supported.

Scancodes are sent from the keyboard to the machine and stored into a 32-byte FIFO (first-in
first-out) buffer. If this buffer is full, keys followed will be ignored. A keyboard handling
routines process the code translation (from scan code to ASCII), shift, and capslock keys.

en_extkb
purpose Enable external AT keyboard.

syntax void en_extkb();

example call en_extkb();

description The en_extkb function enables the external AT keyboard. The external
keyboard is disabled upon power on. This routine must be called prior to
use of the external keyboard. It starts all related background routines
and also clears the keyboard buffer.

returns none

dis_extkb
purpose Disable external AT keyboard.

syntax void dis_extkb();

example call dis_extkb();

description The dis_extkb function disables the external AT keyboard. All related
background routines are stopped.

returns none

ext_getchar
purpose Get one character from the keyboard buffer of the external AT keyboard.

syntax char ext_getchar();

example call c = ext_getchar();

description The ext_getchar function reads one character from the keyboard buffer
of the external AT keyboard and then removes the character from the
keyboard buffer.

returns The ext_getchar function returns the character read from the keyboard
buffer. If the keyboard buffer is empty, a null character (0x00) is
returned.

 50

capital_lock
purpose set external keyboard capslock status

syntax void capital_lock(int capslock);

int capslock; /* capslock to be set , 1/0 to turn on/off */

example call capital_lock(1); /* on capital lock */

description This routine forces to turn on or off the capslock and is usually used
during system initialization.

returns none

num_lock
purpose set external keyboard numlock status

syntax void num_lock(int numlock);

int numlock; /* numlock to be set , 1/0 to turn on/off */

example call num_lock(1); /* on num lock */

description This routine forces to turn on or off the numlock.

returns none

 51

2.10 LCD

This section describes the output routines and the control routines concerning the LCD
display.

2.10.1 Graphic Display

A 240 X 64 graphics display is used on the 520. There are three different sizes of character
fonts supported on 520, i.e., 6X8, 8X16, and 16X24. If 6X8 font is used, there are at most 40
characters by 8 lines. If 8X16 font is used, there are at most 30 characters by 4 lines. And
there are at most 15 characters by 2.5 lines if the font 16X24 is used. Different fonts can co-
exist on the display. And user can change the font to be used at will.

A coordinate system is used in the cursor movement routines to determine the position of the
cursor. The coordinate of the top left position is (0,0) and the bottom left position is assigned
with coordinate (0,7). That is, for row positions, it is always from 0 to 7 (each row occupies 8
dots) in regardless of the font being used. Whereas, for the column positions, it will depend on
the size of the font being used. For example, if an 8X16 font is used, the bottom right position
will be (29,7).

For some graphics display routines (clr_rect, fill_rect, show_image, and get_image), the
coordinate system used is on dot (pixel) basis. The top left position is (0,0), and the bottom
right position is (239,63).

The show_image function can be used to display user’s logo or other images on the 520 LCD.
User needs to allocate an unsigned char array to store the bitmap data for the image. This
array begins with the top row of pixels. Each row begins with the leftmore pixels. Each bit of
the bitmap represents a single pixel of the image. If the bit is set to 1, the pixel is marked, and
if it is 0, the pixel is unmarked. The first pixel in each row is represented by the least
significant bit of the first byte in each row. If the image is wider than 8 pixels, the ninth pixel in
each row is represented by the least significant bit of the second byte in each row. The
following is an example of the company logo and the static unsigned char array to store its
bitmap data.

static unsigned char CipherLab_logo[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0, 0xff, 0x0f, 0x00, 0x00,
0x00, 0x00, 0x10, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x0b, 0x00, 0x00, 0x00,
0x00, 0xfc, 0xff, 0x0b, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x0b, 0x80, 0x07, 0x00, 0x00, 0xf4,
0xff, 0x0b, 0xc0, 0xac, 0x93, 0x77, 0xf4, 0x1d, 0x0b, 0x60, 0xa0, 0x94, 0x90, 0xf4, 0xda,
0x0a, 0x20, 0xa0, 0x94, 0x90, 0xf4, 0xda, 0x0a, 0x20, 0xa0, 0xf3, 0x77, 0x74, 0x17, 0x0b,
0x60, 0xa8, 0x90, 0x30, 0x74, 0xd0, 0x0a, 0xc0, 0xac, 0x90, 0x50, 0x74, 0xd7, 0x0a, 0x80,
0xa7, 0x90, 0x97, 0x04, 0x17, 0x0b, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x0f, 0x00, 0x00,
0x00, 0x00, 0xfc, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

 52

2.10.2 Special Font Files

Besides the standard font, 520 can display special characters such as the foreign language
characters providing that those font files have been downloaded to 520. CipherLab provides
users three special font files to display Japanese, Simplified Chinese, and Traditional Chinese
characters. And also the specific library needs to be included if the related functions are
called in user’s C program.

Font files:

• 520Font-jp.shx : Japanese Characters Font File

• 520Font-sc.shx : Simplified Chinese Characters Font File

• 520Font-tc.shx : Traditional Chinese Characters Font File

Libraries for special fonts:

• 520jplib.lib : including jpprintf, jpputchar, and jpputs functions

• 520sclib.lib : including scprintf, scputchar, and scputs functions

• 520tclib.lib : including tcprintf, tcputchar, and tcputs functions

clr_eol
purpose Clear from where the cursor is to the end of the line.

syntax void clr_eol();

example call clr_eol();

description The clr_eol function clears from where the cursor is to the end of the line,
and then moves the cursor to the original place.

returns none

backlit_status
purpose Get current backlit status.

syntax int backlit_status();

example call backlit_status();

description The backlit_status function returns the current setting of backlit.

returns BKLIT_ON, backlit is on.
BKLIT_OFF, backlit is off.

clr_rect
purpose Clear a rectangular area on the LCD display.

syntax void clr_rect(int left, int top, int width, int height);
int left; /* x coordinate of the left most dot of the rectangular to

 be cleared */
int top; /* y coordinate of the top most dot of the rectangular to
 be cleared */
int width; /* the width in dots of the rectangular to be cleared */
int height;/* the height in dots of the rectangular to be cleared */

example call clr_rect(12,8,40,8);

description The clr_rect function clears an rectangular area on the LCD display
whose top left position and size are specified by left, top, width, and
height. The cursor position is not affected after the operation.

 53

returns none

clr_scr
purpose Clear LCD display.

syntax void clr_scr();

example call clr_scr();

description The clr_scr function clears the LCD display and places the cursor at the
first column of the first line, that is (0,0) as expressed with the coordinate
system.

returns none

fill_rect
purpose Fill a rectangular area on the LCD display.

syntax void fill_rect(int left, int top, int width, int height);
int left; /* x coordinate of the left most dot of the rectangular to
 be filled */
int top; /* y coordinate of the top most dot of the rectangular to
 be filled */
int width; /* the width in dots of the rectangular to be filled */
int height; /* the height in dots of the rectangular to be filled */

example call fill_rect(12,8,40,8);

description The fill_rect function fills a rectangular area on the LCD display whose
top left position and size are specified by left, top, width, and height. The
cursor position is not affected after the operation.

returns none

GetCursor
purpose Get current cursor status.

syntax int GetCursor();

example call if (GetCursor()==0) puts("Cursor Off");

description The GetCursor function check if the cursor is visible or not.

returns The GetCursor function returns an integer of 1 if the cursor is visible
(turned on), 0 if not.

GetFont
purpose Get current font information.

syntax int GetFont();

example call if (GetFont() = = FONT8X16) puts("Font : 8X16");

description The GetFont function returns the information about the current font type.

returns The return value depends on the current font being used.

FONT6X8 : if 6X8 font is used

FONT8X16 : if 8X16 font is used

FONT16X24 : if 16X24 font is used

 54

get_image
purpose Read the bit map pattern of a rectangular area on the LCD display.

syntax void get_image(int left, int top, int width, int height, unsigned char *pat);
int left; /* x coordinate of the left most dot of the rectangular */
int top; /* y coordinate of the top most dot of the rectangular */
int width; /* the width in dots of the rectangular */
int height; /* the height in dots of the rectangular */
unsigned char *pat; /* the buffer where the bit map will be copied to */

example call get_image(12,32,60,16, buf);

description The get_image function copies the bit map pattern of a rectangular area
on the LCD display whose top left position and size are specified by left,
top, width, and height to the buffer specified by pat. The cursor position
is not affected after the operation.

returns none

GetVideoMode
purpose Get current display mode information.

syntax int GetVideoMode();

example call if (GetVideoMode() = = VIDEO_NORMAL) puts("Normal Mode");

description The GetVideoMode function returns the information about the display
mode.

returns The return value depends on the current display mode being used.

VIDEO_NORMAL : if normal mode is selected
VIDEO_REVERSE : if reverse mode is selected

gotoxy
purpose Move cursor to new position.

syntax int gotoxy(int x_position, int y_position);
int x_position; /* x coordinate of the new cursor position desired */
int y_position; /* y coordinate of the new cursor position desired */

example call gotoxy(10,0); /* move to the 11th column of the first line */

description The gotoxy function moves the cursor to a new position whose
coordinate is specified in the argument x_position and y_position.

returns Normally the gotoxy function will return an integer value of 1 when
operation completes. In case of LCD fault, 0 is returned to indicate error.

lcd_backlit
purpose Set LCD backlight

syntax void lcd_backlit(state);

int state; /* LCD backlight state 0 / 1 (off / on) */

example call lcd_backlit(1); /* turn on LCD backlight */

description The lcd_backlit fine tunes the LCD backlight on or off depends the value
of state. The backlight will be on if state is 1, off if 0.

returns none.

 55

printf
purpose Write character strings and values of C variables in a specified format to

the LCD display.

syntax int printf(char* format, var);
char* format; /* character string that describes the format to be used

 variable number of arguments whose values are being
 printed on the LCD display */

example call printf("ID : %s", id_buffer);

description The printf function accepts a variable number of arguments and prints
them to the LCD display. The value of each argument is formatted
according to the codes embedded in the format specification format.

To print values of C variables, a format specification must be embedded
in format for each variable to be printed. The format specification for
each variable has the following form :

%[flags][width].[precision][size][type]

Field Explanation
% (required) Indicates the beginning of a format

specification. Use %% to print a percentage sign.
flags (optional) One or more of the '-', '+', '#' characters or a blank space

specifies justification, and the appearance of plus / minus
 signs in the values printed (see table below).

width (optional) A number that indicates how many characters,
at a minimum, must be used to print the value

precision (optional) A number that specifies how many characters,
at maximum, can be used to print the value.
When printing integer variables, this is the
minimum number of digits used.

size (optional) A character that modifies the type field which
comes next. One of the characters 'h', 'l', 'L' can
appears in this field to differentiate between
short and long integers. 'h' is for short integers,
and 'l' or 'L' for long integers.

type (required) A letter that indicates the type of variable being
printed (see table below)

Flags Meaning
- Left justify output value. Default is right justification.
+ If the output value is a numerical one, print a '+' or '-'

character according to the sign of the value. A '-' character
is always printed for a negative value no matter this flag is
specified or not.

blank Positive numerical values are prefixed with blank spaces.
This flag is ignored if the + flag also appears.

When used in printing variables of type o, x, or X,
 none zero
output values are prefixed with 0, 0x, or 0X, respectively.

Type Expected Input
c Single character.
d Signed decimal integer.
i Signed decimal integer.

o Octal digits without sign.
u Unsigned decimal integer.
x Hexadecimal digits using lower case letter.
X Hexadecimal digits using upper case letter.
s A null terminated character string.

 56

The jpprint, scprintf, and tcprintf functions are special printf functions to
display a string that consists of the Japanese, simplified Chinese and/ or
traditional Chinese characters and the other variables.

returns The printf function returns the number characters sent to the LCD display

putchar
purpose Display a character on the LCD display.

syntax int putchar(char c);
char c; character sent to the LCD display

example call putchar('A');

description The putchar function sends the character specified in the argument c to
the LCD display at the current cursor position and moves the cursor
accordingly.

The jpputchar, scputchar, and tcputchar functions are special putchar
functions to display a single Japanese, simplified Chinese and/ or
traditional Chinese character.

returns none

puts
purpose Display a string on the LCD display.

syntax char puts(char* string);
char* string; /* string to be displayed */

example call puts("Password : ");

description The puts function sends a character string whose address is specified in
the argument string to the LCD display starting from the current cursor
position. The cursor is moved accordingly as each character of string is
sent to the LCD display. The operation continues until a terminating null
character is encountered.

The jpputs, scputs, and tcputs functions are special puts functions to
display a string which consists of the Japanese, simplified Chinese and/
or traditional Chinese characters.

returns The puts function returns the number characters sent to the LCD display

SetCursor
purpose Turn on or off the cursor of the LCD display.

syntax void SetCursor(int status);
int status; /* integer representing cursor status to be set */

example call SetCursor(0); /* invisible the cursor */

description The SetCursor function displays or hides the cursor of the LCD display
according to the value of status specified. If status equals 1, the cursor
will be turned on to show the current cursor position. If status equals 0,
the cursor will be invisible.

returns The SetCursor function has no return values.

 57

SetFont
purpose Select the font to be used afterwards.

syntax int SetFont(int font);
int font; /* integer representing font to be use afterwards */

example call SetFont(FONT8X16);

description The SetFont function selects the font specified by font to be used
following this call. The valid values are as follow

FONT6X8 : 6X8 font

FONT8X16 : 8X16 font

FONT16X24 : if 16X24 font is used

returns none

SetVideoMode
purpose Select video mode for the display.

syntax void SetVideoMode(int mode);
int mode; /* integer representing video mode to be set */

example call SetVideoMode(VIDEO_REVERSE); /* select reverse video mode */

description The SetVideoMode function set the display mode for the following LCD
operation. The available modes are VIDEO_NORMAL and
VIDEO_REVERSE.

returns The SetVideoMode function has no return values.

show_image
purpose Put a rectangular bit map to the LCD display.

Syntax void show_image(int left, int top, int width, int height, unsigned char
*pat);
int left; /* x coordinate of the left most dot of the rectangular */
int top; /* y coordinate of the top most dot of the rectangular */
int width; /* the width in dots of the rectangular */
int height; /* the height in dots of the rectangular */
unsigned char *pat; /* the buffer that hold the bit map to be displayed */

example call show_image(35, 5, 52, 24, CipherLab_logo[]);

description The showet_image function displays a rectangular bit map specified by
pat to the LCD display. The rectangular’s top left position and size are
specified by left, top, width, and height. The cursor position is not
affected after the operation.

returns none

wherex
purpose Get x-coordinate of the cursor location.

syntax int wherex();

example call x_position = wherex();

description The wherex function determines the current x-coordinate location of the
cursor.

returns The wherex function returns the x-coordinate of the cursor location.

 58

wherexy
purpose Get x-coordinate and y-coordinate of the cursor location

syntax int wherexy(int* column, int* row);
int* column; /* pointer to integer where x-coordinate is stored */
int* row; /* pointer to integer where y-coordinate is stored */

example call wherexy(&x_position, &y_position);

description The wherexy function copies the value of x-coordinate and y-coordinate
of the cursor location to the variables whose address is specified in the
arguments column and row.

returns none

wherey

purpose Get y-coordinate of the cursor location.

syntax int wherey();

example call y_position = wherey();

description The wherey function determines the current y-coordinate location of the
cursor.

returns The wherey function returns the y-coordinate of the cursor location.

 59

2.11 Power

This section describes the power management functions for 520. The get_lnpwr , and
get_bat1 and get_bat2 functions are used to monitor the voltage level of the external power
supply and the two backup batteries.

2.11.1 Backup Batteries

If the optional backup battery is installed, the machine can still be operational by using the
power of the backup batteries when there is no external power supplied. The battery life may
be shortened or even damaged if the battery was deeply drained. So it is important to
constantly monitor the voltage level of the batteries and shut down the system before the
voltage level falls too low.

battery_status
purpose Check the status of the battery usage.

syntax int battery_status(void);

example call bat_status = battery_status();

description This function can be used to the status of the battery usage.

returns 0, AC power is used.
1, battery is used.
2, battery is used and the backlit is forced off because of low voltage.
3, battery low and system may not function correctly.

get_lnpwr
purpose Get voltage level of the external power supply.

syntax unsigned get_lnpwr();

example call if (get_lnpwr() < 11000) puts(“Lose External Power”);

description The get_lnpwr function reads the voltage level of the external power in
units of mV.

returns The get_lnpwr function returns the voltage level of the external power in
units of mV (mili-volt).

get_bat1, get_bat2
purpose Get voltage level of the backup batteries.

syntax unsigned get_bat1();
unsigned get_bat2();

example call bat1 = get_bat1();
bat2 = get_bat2();

description The get_bat1 function reads the voltage level of the first backup battery
in units of mV and the get_bat2 function reads the voltage level of the
second backup battery. If external power is supplied, the reading value is
meaningless.

returns The get_bat1 and get_bat2 functions return the voltage level of the
respective backup battery in units of mV (mili-volt).

 60

2.12 Communication Ports

There are totally three communication ports on 520, namely COM1, COM2 and COM3. The
COM3 is fixed to be RS232. And COM1 and COM2 could be RS232 if the optional RS232
board are installed on 520 for these two ports. Besides the data signals (transmit & receive), 2
handshake signals (RTS & CTS) are also provided for data flow control. Features provided
are described in detail below,

2.12.1 Parameters
• Baud rate : One out of 8 baud rates can be selected (115200, 76800, 57600, 38400,

19200, 9600, 4800, 2400)

• Data Bits : 7 or 8

• Parity : Even, Odd or none

• Stop bit : 1

2.12.2 Receive Buffer

A 256 bytes FIFO buffer is allocated for each port. The data successfully received is stored
into this buffer sequentially (if any error such as framing, parity error and so on occurs, the
data is simply discarded). However if the buffer is full, the data followed will be discarded and
an overrun flag is set to indicate this error.

2.12.3 Transmit Buffer

The system does not allocate any transmit buffer, it simply records the pointer to the string to
be sent. The transmission stops when a null (0x00) character was encountered. The
application program must allocate its own transmit buffer and not to modify it during
transmission.

2.12.4 Flow Control

To avoid data loss, 3 kinds of flow control are supported and is done by background routines.

1) None : no flow control is performed

2) CTS : RTS and CTS signals are used for flow control.

• Transmission : The transmission is allowed only when CTS signal is at the active
level (mark). If the CTS is dropped and later become active again, the
transmission is automatically resumed by background routines. However, due to
the UART design (on-chip temporary transmission buffer), up to 2 characters
might be sent after the CTS was dropped.

• Receive : The RTS signal is used to indicate that the receiving buffer is or is
going to be full and instruct the transmitting side to halt transmission. If there are
less than 5 character spaces available in the receiving buffer, the RTS is
dropped. Then the RTS is activated again when there are no less than 10
character spaces available in the receiving buffer. If there are sufficient spaces in
the buffer, the received data is stored even when RTS is dropped.

3) XON/XOFF : instead of RTS/CTS signals, 2 special characters are used for flow
control. That is, XON (hex 11) and XOFF (hex 13). XON is used to enable
transmission while XOFF to disable transmission.

• Transmission : when the port is opened, the transmission is enabled. Then every
character received is examined to see if it is a normal data or flow control codes.
If XOFF is received, transmission is halted. It is resumed later when a XON is
received. Just like RTS/CTS control, up to 2 characters might be sent after the
XOFF was received.

 61

• Receive : The received characters are examined to see if it is normal data (stored
into receive buffer) or flow control codes (set/reset transmission flag but not
stored). If there are less than 5 character spaces available in the receiving buffer,
the XOFF is sent. Then the XON is sent when there are no less than 10 character
spaces available in the receiving buffer. If there are sufficient spaces in the
buffer, the received data is stored even when in XOFF state. Note that if
receiving/transmission are concurrently in operation, XON/XOFF control codes
might be inserted into normal transmit data string. In using this method, make
sure the respective side features the same control methodology or dead lock
might happen.

Regardless of the flow control methodology selected, the RTS is activated when the port is
opened and dropped when the port is closed (the power on default status).

clear_com
purpose Clear receive buffer

syntax void clear_com(int port);
int port; /* port to be opened, from 1 to 3 */

example call clear_com(1);/* clear COM1 receive buffer */

description This routine is used to clear all data stored in the receive buffer. This can
be used to avoid mis-interpretation when overrun or other error occurred.

returns none

close_com
purpose Disable specified RS232 port

syntax void close_com(int port);
int port; /* port to be opened, from 1 to 3 */

example call close_com(1); /* close com1 */

description The close_com disables the RS232 port specified.

returns none

com_cts
purpose Get CTS level

syntax int com_cts(int port);
int port; /* port to be opened, from 1 to 3 */

example call if (com_cts(1) == 0) printf("COM1 CTS is space");
else printf("COM1 CTS is mark");

description This routine is used to check current CTS level.

returns 1, if CTS is in mark state
0, if CTS is in space state

com_eot
purpose See if any COM port transmission in process (End Of Transmission)

syntax int com_eot(int port);
int port; /* port to be opened, from 1 to 3 */

example call while (com_eot(1) != 0x00); /* wait till prior transmission completed */
write_com(1, "NEXT STRING");

 62

description This routine is used to check if prior transmission is still in process or not.

returns 0, prior transmission still in course
 1, transmission completed

CommType
purpose See which type of interface board is installed at the port specified.

syntax int CommType(int port);
int port; /* port to be checked, 1 or 2. */

example call if (CommType(1)==2) { /* wait till prior transmission completed */
printf("Star Node interface is installed at COM1.”);

}

description COM1 and COM2 .

returns 0, RS-232 or 20mA Current Loop

 1, RS-485 Half Duplex
2, Star Node
3, RS-485 Full Duplex

com_overrun
purpose See if overrun error occurred

syntax int com_overrun(int port);
int port; /* port to be opened, from 1 to 3 */

example call if (overrun(1) > 0) clear_com(1);
/* if overrun, data stored in the buffer is not complete, clear them */

description This routine is used to see if overrun met. The overrun flag is
automatically cleared after examined.

returns 1, overrun error met
0, OK

com_rts
purpose Set RTS signal

syntax void com_rts(int port, int i);
int port; /* port to be opened, from 1 to 3 */
int i; /* RTS state, 1/0, mark/space */

example call com_rts(1, 1);/* set COM1 RTS to mark */

description This routine is used to control the RTS signal. It works even when the
CTS flow control is selected. However, RTS might be changed by the
background routine according to receiving buffer status. It is strongly
recommended not to use this routine if CTS control is utilized.

returns none

nwrite_com
purpose Send a specific number of characters out through RS232 port

syntax void nwrite_com(int port, char *s, int count);
int port; /* port to be opened, from 1 to 3 */

 63

char *s; /* string to be sent */
int count; /* number of character to be sent */

example call char s[] = { "Hello\n" };
nwrite_com(1, s, 2);/* send two characters "He" through COM1 */

description This routine is used to send a specific number of characters specified by
count through RS232 ports. If any prior transmission is still in process, it
is terminated then the current transmission resumes. The character
string is transmitted one by one until the specified number of character is
sent.

returns none

open_com
purpose Initialize and enable specified RS232 port

syntax void open_com(int port, int parameter);
int port; /* port to be opened, from 1 to 3 */
int parameter;/* port parameters as below */

D0-D2 baud rate 0 to 7 = 115200/76800/57600/
38400/19200/9600/4800/2400

D3 data bits 0 : 7bits 1 : 8 bits

D4 Parity enable 0 : disable 1 : enable

D5 even/odd 0 : odd 1 : even

D6 flow control 0 : disable 1 : enable

D7 flow control method 0 : CTS, 1 : XON/XOFF

example call open_com(1, 0x0a);
/* open com1 to 9600, 8 data bits, no parity and no handshake */

description The open_com function initializes the specified RS-232 port. It clears the
receive buffer, stops any data transmission under going, reset the status
of the port, and set the RS-232 specification according to parameters
set.

returns none

read_com
purpose Read 1 byte from the RS232 receive buffer

syntax int read_com(int port, char *c);
int port; /* port to be opened, from 1 to 3 */
char *c; /* pointer to character returned */

example call char c;
i=read_com(1, c);
if (i) printf_us("char %c received from COM1", *c);

description This routine is used to read one byte from the receive buffer and then
remove it from the buffer. However, if the buffer is empty, no action is
taken and 0 is returned.

returns 1, available or 0 if buffer is empty

 64

write_com
purpose Send a string out through RS232 port

syntax void write_com(int port, char *s);
int port; /* port to be opened, from 1 to 3 */
char *s; /* string to be sent */

example call char s[] = { "Hello\n" };
write_com(1, s);/* send String "Hello\n" through COM1 */

description This routine is used to send a string through RS232 ports. If any prior
transmission is still in process, it is terminated then the current
transmission resumes. The character string is transmitted one by one
until a NULL character is met. A null string can be used to terminate prior
transmission.

returns none

 65

2.13 RS485

If RS485 communication is to be used on 520, an optional RS485 board can be installed on
COM1 or COM2.

2.13.1 Parameter

The communication parameters are fixed as follows,

• Baud Rate : 76.8 K bps
• Data Bit : 9
• Parity : None

To avoid collision and ensure data integrity, special communication protocol and flow control
is utilized and are described below,

2.13.2 Station ID

The RS485 is a multi-drop communication standard which allows up to 30 stations
(expandable by use of repeater) to be linked on the same net. Each station must be assigned
with an unique station ID for proper communication. This one-byte station ID ranges from 1 to
255. Station ID 0 is reserved for broadcasting purpose only and can not be assigned to any
station.

2.13.3 Master/Slave

One and only one of the stations on the link is assigned to be the bus arbitrator (master),
while others are listeners (slaves). To avoid collision, the master is the only station that can
start a talk and the specified listener can respond to this action by sending an echo back to
the master. That is, a talk is always started by the master and ended with an echo from the
specified slave. To improve efficiency, echo is done by the interrupt routine.

2.13.4 Packet

Communication is done by transactions of packets. A packet is composed of several
characters and is the only meaningful communication unit. That is, a full packet must be
transmitted/received to be correctly parsed.

Processing of the packet has been done by background routines and is not really a concern
for the C programmer. The materials herein serves as reference only.

Compositions of a packet are listed and explained below,

DLSs..sK
where,

D : destination station ID
L : length of the packet in bytes
S : source station ID
s..s : string to be transferred
K : checksum

2.13.5 Master
• Polling

Since the communication always starts from the master side. It is the master's
responsibility to poll slave stations constantly to see if anything to be taken care of
or not. To do so, a null string was sent, that is, the (s..s) in the packet is null.
Whereas the slave station echoes (by background routine) back the status word
and the message string (if available)to indicate its current status.

Master send packet DLSK

where,

 66

D = slave ID
S = master ID

Slave echoes packet DLSWWs..sK

where,
D = master ID
S = slave ID
WW=2 bytes status word
s..s = message if any

• Command/message
If a command or message is to be sent to a slave station. The slave always
echoes with status word only. That is if the (s..s) from the master side is not null, it
is treated as a command transaction and only status word is returned.

Master send packet DLSs.sK

where,
D = slave ID
s..s = command/message string
S = master ID

Slave echoes packet DLSWWK

where,
D = master ID
S = slave ID
WW=2 bytes status word

The echo from the slave at this time only indicates that the command/message
packet is successfully received. To make sure that the command/message is
correctly interpreted/processed, the master can then poll the slave station to get
the completion result from the slave. Note that if the destination from the master is
0, it is a broadcasting command and is accepted by all slave stations. However, no
echo is done since this will cause data collision.

2.13.6 Slave
As the transaction all start from the master side. To improve efficiency, the slave side echoes
to the transaction immediately following receipt of a packet by background routines (interrupt).
That is, all supported routines for slave DO NOT initiate any communication activities, it must
wait till the master sends out a valid packet and then echo. All these routines simply modify
some internal flags and buffers.

2.13.7 Status Word
A 16-bit RS485 status word was declared by background routines. Bit 0 & 1 are reserved for
transaction use and is manipulated by background routines. Whereas others are free to be
defined for C program use. This word is initialized to 0 when RS485 port is opened.

extern int RS485_STW;

• bit 0 : set to 1 once a complete packet is received and can be used to see if this
station is on-lined or not (granted by the master).

• bit 1 : set to 1 if bus contention is encountered. During transmission, the rolled-
back character is verified. If fault, the transmission is stopped at once and this bit
is set to 1 to indicate this error.

Other bits can be used to show current status, for example, (access control)

• bit 2 : successful ID scanned (to ask master station to verify this card)
• bit 3 : door lock status (locked or not)
• others depend on application need

 67

Once this slave is polled by the master, the status word is returned. And if the bit 1 is set to 1,
the master can send another command to read this ID, process the ID. And then send
another command to instruct the slave if this is a valid ID or not (open door or not).

2.13.8 RS485 Processing
Unlike RS232 communication, special care must be taken in handling a multi-drop
communication like RS485. The recommended flow are as follows,

• Master polling

1) write_485(ID, ""); /* null string */
2) read_485();
3) if string echoed, check ID, if correct then OK, END, else fault, END
4) if time out then time out error, END
5) goto step 2 and repeat

• Master command

Being an arbitrator, it is the master's responsibility to ensure successful
transaction. That is, messy retry must be included in the procedure. However, as
the slave echoes during the interrupt routine, the recommended time out is only
10-15 ms. Also, to improve performance, the master must try to poll slaves as fast
as it can which however overloads the master station. To overcome this, the
procedures described above are separated into many small steps as can be seen
in the sample program.

1) write_485(ID, command_string); /* non-null command string */
2) read_485();
3) if string echoed, check ID, if correct then go to step 6, else fault, END
4) if time out then time out error, END
5) go to step 2 and repeat
6) Poll slave to get result as the previous one

• Slave

1) if read_485(s) == 0 then END
2) parse command string s
3) prepare result write_485(result);

Close485
purpose Close RS485 communication port

syntax int Close485(int port);
int port; /* port to be accessed, 1 or 2 */

example call Close485(2);

description this routine disables RS485 port.

returns

Echo485
purpose Enable or disable the RS485 receive interrupt when it’s transmitting.

syntax void Echo485(int port, int state);
int port; /* port to be accessed, 1 or 2 */
int state; /* 0/1 to disable/enable echo */

example call Echo485(0);/* Echo off */

description If echo is on, the transmitted data will be received and put into the
receive buffer of the sender.

 68

returns none

Open485
purpose Open RS485 communication port

syntax int Open485(int port, int master, int ID);
int port; /* port to be accessed, 1 or 2 */
int master; /* 1/0, master/slave station */
int ID; /* station ID from 1 to 255 */

example call Open485(2, 0, 10); /* COM2, slave station #10 */

description this routine enables RS485 port and set its station ID and communication
attribute (master/slave).

returns

Read485
purpose Read RS485 packet received

syntax int Read485(int port, char *s);
int port; /* port to be accessed, 1 or 2 */
char *s; /* string pointer where received packet to be copied */

example call char s[50];
if (Read485(2,s) > 0) {

printf_us("String %s received via COM2", s+3);
}

description The background interrupt routines handle receiving of the RS485. That
is, to verify the ID (destination), length, checksum and so on. Upon
receipt of a successful packet, an internal flag is set and the whole
packet is stored in the receiving buffer. This flag disables further
receiving operation until the received packet is read by this routine
(which in the fact, clear this flag). The whole packet (except checksum)
described previously is copied to the string pointer (s). The source ID is
also returned and can be used to see if this is a broadcasting command
or not.

returns if available, string length of the packet
0, not available

Write485 (for master)
purpose Send a string to slave station

syntax int Write485(int port, int ID, char *s);
int port; /* port to be accessed, 1 or 2 */
int ID; /* destination slave ID*/
char *s; /* string to be sent */

example call Write485(2, 5, "READ"); /* send string "READ" to slave #5 via COM2*/

description the routine is used by master station to send a string out to designated
slave station. The RS485 transmission starts immediately when this
routine is called.

returns

 69

Write485 (for slave)
purpose Prepare echo string to master station

syntax int Write485(int port, char *s);
int port;/* port to be accessed, 1 or 2 */
char *s; /* string to be sent */

example call Write485(2, "DONE"); /* echo string "DONE" when polled via COM2 */

description Unlike master station, this routine does not initiate any transmission.
Instead, it copies the string to an internal buffer and sets a flag. Later,
when this station is polled, the stored string is sent back to the master.

This flag acts as follows,
• set, when this routine is called
• clear, on the following conditions,

1) continuously polled for 4 times, up to 3 retries allowed.
2) polled and then packet for other station is

acknowledged, job for me is completed
3) a non-null packet for this slave is received, new job for

me
returns

 70

2.14 Memory

Flash and SRAM manipulation routines are described in this section.

free_memory
purpose Get free memory size information.

syntax long free_memory();

example call available_memory = free_memory();

description The free_memory function gets the information of the amount of free
(unused) memory of the file space.

returns The free_memory function returns a long integer indicating the amount of
free memory in bytes.

init_free_memory
purpose Initialize file space.

syntax void init_free_memory();

example call init_free_memory();

description The init_free_memory function will first try to identify how many SRAMs
are installed, and then initialize the contents of the file space (total
SRAM installed excludes memory of system space and user space). The
original contents of the file space will be wiped out after this function is
called. Whenever the amount of the SRAM installed is changed, this
function must be called to recognize the changes.

returns This function has no return values.

MCDSize
purpose Check the memory size of the optional memory card .

syntax int MCDSize(void);

example call mcd_size = MCDSize();
printf(“The memory card is %d KB.”, mcd_size);

description This routine is used to check the memory size of the optional memory
card quickly. The file system will not be destructed by this routine.

returns The memory card size in units of KB.

test_main_mem
purpose Main memory read/write test routine.

syntax int test_main_mem(void);

example call if (test_main_mem()==1) printf(“Main memory test OK!”);

description This routine is used to test the main memory. The file system will be
destructed while it’s testing.

returns 1, if test OK.
0, if test fails.

 71

test_MCD
purpose Memory card read/write test routine.

syntax int test_MCD(void);

example call memory = test_MCD();
printf(“Memory Card Size = %d KB“, memory);

description This routine is used to test the optional memory card. The test takes a
few seconds depending on the size of the memory card. The file system
will be destructed while it’s testing.

returns The memory card size in units of KB.

 72

2.15 Miscellaneous

DownLoadPage
purpose Enter the ‘Download’ mode

syntax void DownLoadPage();

example call open_com(1, 0x08); /* 38400, N, 8 */
DownLoadPage(); /* enter download mode */

description The DownLoadPage function is used to set 520 to the download mode.
The Download page will show up and user can select the communication
port and the baud rate for program download. And then write the new
program to the flash memory. At the end, this routine jumps to the
system start point and the system will re-initialize again.

returns none

prc_menu
purpose Process the menu

syntax void prc_menu(MENU* menu);

example call prc_menu(&Msystem); /* process Msystem menu */
struct MENU Msystem;

description The prc_menu function is used to process the menu. SMENU and
MENU structure are defined in “520lib.h”. Users can define their MENU
structure and use prc_menu function to build a hierarchy menu-driven
user interface.

returns none

 73

3 Standard Library Routines

The standard library routines supported are categorized and listed below,

3.1 Input and Output : <stdio.h>
• File Operations: Not supported, please use Syntech Library routines.

• Formatted Output: Only sprintf is supported, for formatted output to
display, please refer to Syntech Library "LCD".

• Formatted Input: Only sscanf is supported.

• Character Input and Output: Not supported, please refer to Syntech Library
"External AT Keyboard" and "Membrane Keypad"

• Direct Input and Output: Not supported.

3.2 Character Class Test : <ctype.h>

For each function, the argument is an int, whose value must be EOF or representable as an
unsigned char, and the return value is an int. The functions return non-zero (true) if the
argument c satisfies the condition described, and zero if not.

• isalnum(c) isalpha(c) or isdigit(c) is true

• isalpha(c) isupper(c) or islower(c) is true

• iscntrl(c) control character

• isdigit(c) decimal digit

• isgraph(c) printing charcater except space

• islower(c) lower-case letter

• isprint(c) printing character including space

• ispunct(c) printing character except space or letter or digit

• isspace(c) space, formfeed, newline, carriage return, tab, vertical tab

• isupper(c) upper-case letter

• isxdigit(c) hexadecimal digit

In addition, there are two functions that convert the case of letters,

• int tolower(c) convert c to lower case

• int toupper(c) convert c to upper case

3.3 String Functions : <string.h>

Functions start with "str"
In the routine list, the type of variables used are as below,

char *s, t;
const char * cs, ct;
size_t n;
int c;

• char *strcpy(s, ct) copy string ct to string s, including 0x00, return s

• char *strncpy(s, ct, n) copy at most n characters of string ct to s, return s, pad with
0x00s if ct has fewer than n characters

• char *strcat(s, ct) concatenate string ct to end of string s, return s

• char *strncat(s, ct, n) concatenate at most n characters of ct to s, return s

• int strcmp(cs, ct) compare string cs and ct, return value < 0 if cs<ct, = 0 if cs
= ct, > 0 if cs>ct

• int strncmp(cs, ct, n) compare at most n characters of string cs and ct, return
value < 0 if cs < ct, = 0 if cs = ct, > 0 if cs>ct

 74

• char *strchr(cs, c) return pointer to first occurrence of c in cs or NULL if not
present

• char *strrchr(cs, c) return pointer to last occurrence of c in cs or NULL if not
present

• size_t strspn(cs, ct) return length of prefix of cs consisting of characters in ct

• size_t strcspn(cs, ct) return length of prefix of cs consisting of characters not in ct

• char *strpbrk(cs, ct) return pointer to first occurrence in string cs of any
character of string ct, or NULL if none are present

• char *strstr(cs, ct) return pointer to first occurrence of string ct in cs, or NULL if
not present

• size_t strlen(cs) return length of string cs

• char *strtok(s, ct) searches s for tokens delimited by characters from ct

• strcoll Not supported

• strerror Not supported

Functions start with "mem"
In the list, types of variables are as below,

void *s, *t;
const void *cs, *ct;
size_t n;
int c;

• void *memcpy(s, ct, n) copy n characters from ct to s, return s

• void *memmove(s, ct, n) same as memcpy except that it works fine even if the
objects overlap

• int memcmp(cs, ct, n) compare the first n characters of cs with ct; return as strcmp

• void *memchr(cs, c, n) return pointer to first occurrence of character c in cs or
NULL if not present among the first n characters

• void *memset(s, c, n) place character c into first n characters of s, return s

3.4 Mathematical Functions : <math.h>

Mathematical functions are listed below and all of them return a double.

In the list, types of variables are as below,
double x, y;
int n;

• sin(x) sine of x

• cos(x) cosine of x

• tan(x) tangent of x

• asin(x) sin-1(x) in range [-π/2, π/2], x ∈ [-1, 1]

• acos(x) cos-1(x) in range [0, π], x ∈ [-1, 1]

• atan(x) tan-1(x) in range [-π/2, π/2]

• atan2(y, x) tan-1(y/x) in range [-π, π]

• sinh(x) hyprebolic sine of x

• cosh(x) hyperbolic cosine of x

• tanh(x) hyperbolic tangent of x

• exp(x) exponential function ex

• log(x) natural logarithm ln(x), x>0

• log10(x) base 10 logarithm log10(x), x>0

• pow(x, y) x
y. A domain error occurs if x=0 and y<=0, or if x<0 and y is not an

integer

• sqrt(x) x, x0

 75

• ceil(x) smallest integer not less than x, as a double

• floor(x) largest integer not greater than x, as a double

• fabs(x) absolute value x

• ldexp(x, n) x * 2n

• frexp(x, int *exp) splits x into a normalized fraction in the interval [1/2, 1], which is
returned, and a power of 2, which is stored in *exp. If x is zero,
both parts of the result are zero.

• modf(x, double *ip)splits x into integral and fractional parts, each with the same sign
as x. It stores the integral part in *ip, and returns the fractional
part.

• fmod(x, y) floating point remainder of x/y, with the same sign as x. If y is 0,
the result is implementation-defined.

3.5 Utility Function : <stdlib.h>

Number Conversion

• double atof(const char *s) convert s to double, equivalent to strtod(s, (char
**)NULL)

• int atoi(const char *s) convert s to integer, equivalent to strtol(s,
(char**)NULL, 10)

• int atol(const char *s) convert s to long, equivalent to strtol(s,
(char**)NULL, 10)

• double strtod(const char *s, char **endp) converts the prefix of s to double

• long strtol(const char *s, char **endp, int base) converts the prefix of s to long

• unsigned long strtoul(const char *s, char **endp, int base) converts the prefix
of s to unsigned long

• int rand(void) returns a random integer from 0 to 32767

• void srand(unsigned int seed) seed for new pseudo-random generation

• void *bsearch() binary search

• void qsort() ascending sorts

• int abs(int n) integer absolute

• long labs(long n) long absolute

• div_t div(int num, int denom) integer division

• ldiv_t ldiv(long num, long denom) long division

Storage Allocation
Not supported. Please use Syntech library routines instead.

3.6 Diagnostics : <assert.h>
Not supported.

3.7 Variable Argument Lists : <stdarg.h>

Functions for processing variable arguments are listed below.
va_start(va_list ap, lastarg)

type va_arg(va_list ap, type)
void va_end(va_list ap)

3.8 Non-Local Jumps : <setjmp.h>

Not supported.

 76

3.9 Signals : <signal.h>

Not supported.

3.10 Date and Time Function : <time.h>

Not supported.

3.11 Implementation-defined Limits : <limits.h> and <float.h>

Please refer to limit.h and float.h.

 77

4 Real Time Kernel

520 Data Terminal comes with a real-time kernel (µC/OS) that allows user to generate a
preemptive multitasking application. User can apply the real time kernel functions to split the
application into multiple tasks that each task takes turns to gain the access to the system
resource by a priority-based schedule.

µC/OS applies the semaphore mechanism to control the access to the shared resource for
the multiple tasks. There are generally only three operations that can be performed on a
semaphore: CREATE, PEND, and POST. A semaphore is a key that the task requires in
order to continue execution. If the semaphore is already in use, the requesting task is
suspended until the semaphore is released by its current owner.

A task is an infinite loop function or a function which deletes itself when it is done executing.
Each task is assigned with an appropriate priority. The more important the task, the higher the
priority given to it. µC/OS can manage up to 32 tasks (with priority 0 to 31, the lower number,
the higher priority) for the user’s program of the 520 Data Terminal. The main task, main(),
takes priority 16.

A task desiring the semaphore will perform a PEND operation. A task releases a semaphore
by performing a POST operation. If there are several tasks on the pending list, the highest
priority task waiting for the semaphore will receive the semaphore when the semaphore is
posted. The pending list of tasks is always initially empty.

The µC/OS related functions are discussed as follows.

 78

OS_ENTER_CRITICAL
purpose Disable the processor’s interrupt

syntax void OS_ENTER_CRITICAL(void);

example call OS_ENTER_CRITICAL();
… /* user code */

OS_EXIT_CRITICAL();

description A critical section of code is code that needs to be treated indivisibly.
Once the section of code starts executing, it must not be interrupted. To
ensure this, user can call OS_ENTER_CRITICAL function to disable
interrupts prior to executing the critical code and enable the interrupts
when the critical code is done. The function executes in about 5 CPU
clock cycles. This function and OS_EXIT_CRITICAL function must be
used in pairs.

returns none

OS_EXIT_CRITICAL
purpose Ensable the processor’s interrupt

syntax void OS_EXIT_CRITICAL(void);

example call OS_ENTER_CRITICAL();
… /* user code */

OS_EXIT_CRITICAL();

description The function executes in about 5 CPU clock cycles. This function and
OS_ENTER_CRITICAL function must be used in pairs.

returns none

OSSemCreate
purpose Create and initialize a semaphore

syntax OS_EVENT OSSemCreate(unsigned value);

where, OS_EVENT, a data structure to maintain the state of an event
called Event Control Block (ECB), is defined as below,

typedef struct os_event {

unsigned char OSEventTbl[8]; /* Group corresponding to tasks
waiting for event to occur */

unsigned char OSEventGrp; /* List of tasks waiting for event to
occur */

long OSEventCnt; /* Count of used when event is a
semaphore */

void *OSEventPtr; /* Pointer to message or queue
structure */

} OS_EVENT;

value is the initial value of the semaphore. The initial value of the
semaphore is allowed to be between 0 and 32767.

example call sem_time = OSSemCreate(1); /* create a semaphore sem_time and the
initial value of sem_time is set to 1. */

 79

description This function is used to create and initialize a semaphore. Semaphores
must be created before they are used.

returns A pointer to the event control block allocated to the semaphore. If no
event control block is available, a NULL pointer will be returned.

OS_NO_ERR,if the function was successful.

OSSemPend
purpose List a task on the pending list for the semaphore

syntax unsigned char OSSemPend(OS_EVENT *pevent, unsigned long
timeout, unsigned char *err);

where, pevent is a pointer to the semaphore. This pointer is returned to
your application when the semaphore is created.

timeout is used to allow the task to resume execution if the semaphore is
not acquired within the specified number of clock ticks. A timeout value
of 0 indicates that the task desires to wait forever for the semaphore.
The maximum timeout is 65535 clock ticks.

err is a pointer to a variable which will be used to hold an error code.
OSSemPend sets *err to either:

 (1) OS_NO_ERR, if the semaphore is available
 (2) OS_TIMEOUT, if a timeout occurred

example call OSSemPend(sem_time, 0, &err);

description This function is used when a task desires to get exclusive access to a
resource, synchronize its activities with an Interrupt Service Routine
(ISR) or wait until an event occurs. If a task calls OSSemPend function
and the value of the semaphore is greater than 0, then OSSemPend
function will decrement the semaphore and return to its caller. However,
if the value of the semaphore is less than or equal to zero, OSSemPend
function decrements the semaphore value and places the calling task in
the waiting list for the semaphore. The task will thus wait until a task or
an ISR releases the semaphore or signals the occurrence of the event.
In this case, rescheduling occurs and the next highest priority task ready
to run is given control of the CPU. An optional timeout may be specified
when pending for a semaphore.

returns none

OSSemPost
purpose Signal the semaphore

syntax unsigned char OSSemPost(OS_EVENT *pevent);

where, pevent is a pointer to the semaphore. This pointer is returned to
your application when the semaphore is created.

example call OSSemPost(sem_time);

description A semaphore is signaled by calling OSSemPost function. If the
semaphore value is greater than or equal to zero, the semaphore is
incremented and OSSemPost function returns to its caller. If the
semaphore value is negative then tasks are waiting for the semaphore to
be signaled. In this case, OSSemPost function removes the highest
priority task pending for the semaphore from the waiting list and makes
this task ready to run. The schedule is then called to determine if the
awakened task is now the highest priority task ready to run

 80

returns (1) OS_NO_ERR, if the semaphore is available

(2) OS_TIMEOUT, if a timeout occurred

OSTaskCreate
purpose Create a task

syntax unsigned char OSTaskCreate(void (*task)(void *pd), void *pdata,
unsigned char *pstk, unsigned long stk_size, unsigned char piro);

where, task is a pointer to the task’s code.

pdata is a pointer to an optional data area which can be used to pass
parameters to the task when it is created.

pstk is a pointer to the task’s top of stack. The stack is used to store local
variables, function parameters and return addresses and CPU registers
during an interrupt. The size of this stack is defined by the task
requirements and the anticipated interrupt nesting. Determining the size
of the stack involves knowing how many bytes are required for storage of
local variables for the task itself, all nested functions, as well as
requirements for interrupts (accounting for nesting).

prio is the task priority. A unique priority number must be assigned to
each task and the lower the number, the higher the priority.

example call OSTaskCreate(beep_task, (void *)0, beep_stk, 256, 10); /* create a
beep_task with priority 10 */
static unsigned char beep_stk[256];
void beep_task(void*);

description This function allows an application to create atask. The task is managed
by µC/OS. Tasks can be created prior to the start of multitasking or by a
running task.

returns OS_PRIO_EXIST,if the requested priority already exist.

OS_NO_ERR,if the function was successful.

OSTaskDel
purpose Delete a task

syntax unsigned char OSTaskDel(unsigned char piro);
where, prio is the task priority. A unique priority number must be
assigned to each task and the lower the number, the higher the priority.

example call OSTaskDel(10); /* delete a task with priority number 10 */

description This function allows user’s application to delete a task by specifying the
priority number of the task to delete. The calling task can be deleted by
specifying its own priority number. The deleted task is returned to the
dormant state. The deleted task may be created to make the deleted
task active again.

returns OS_TASK_DEL_IDLE if the task to delete is an idle task.
OS_TASK_DEL_ERR if the task to delete does not exist.
OS_NO_ERR if the task was deleted.

 81

OSTimeDly
purpose Allow a task to delay itself for a number of clock ticks.

syntax void OSTimeDly(unsigned long ticks);
where, ticks is the delay time in units of 5 ms.

example call OSTimeDly(10); /* delay the task for 10 X 5 ms */

description This function allows a task to delay itself for a number of clock ticks.
Rescheduling always occurs when the number of clock ticks is greater
than zero. Valid delays range from 1 to 65535 ticks. Note that calling this
function with a delay of 0 results in no delay and thus the function returns
to the caller.

returns none

 82

5 Sample Programs

5.1 User0

5.1.1 Program Description

The sample program in the user0 subdirectory is a data collection program for 520 with a DBF
file. User can download a predefined DBF to the 520, scan the ID label to modify the data of
the records of the DBF, and/or upload the data to the host computer. This program
communicate with the host via RS-232 (19200, no parity, 8 data bit, 1 stop bit, no
handshake).

When downloading the DBF, it waits for the download signal "CIPHER\r" and replies "ACK" to
start to receive the DBF until it receive "\r\r" from the host. The DBF is consisted by 40-byte-
long records. The first 10-byte of each record works as the primary key "ID" of the DBF. The
second, third, and fourth 10-byte are the "Name", "Description", and "Quantity" of the record.

When scanning the data, if the scanned data can be found in the pre-downloaded DBF (has
the same ID), all the fields of the record will be shown on the display, and the cursor will move
to the last field. Otherwise, "Invalid ID!" will show on the display and the scanned ID will be
discarded. User can press "Enter" key to modify the value of the fourth (Q'ty) field by clicking
the number/alphabet of the keypad, or press "ESC" to scan another ID.

When uploading data, the 520 will keep sending the upload signal "CIPHER\r" until it gets the
response "ACK" from the host. If so, it will send the records of the DBF to the host
sequentially.

The 520load directory contains a Visual Basic program for a sample back end program to
download/upload DBF to/from 520. The source code of the back end program is included as
well. This program works with the mentioned user0 program. To expand the functionality,
users can modify the sample program to their needs. "test.data", a sample DBF to download
to the terminal, is also included in the directory.

The library routines and system variables used in user0.c are listed as follows,

add_member() close_com() close_DBF() clr_eol() clr_scr()

CodeBuf creat_DBF() create_index() Decode() delete_member()

en_alpha() get_member() getchar() gotoxy() has_member()

InitScanner1() lseek_DBF() member_in_DBF() on_beeer()

open_com() prc_menu() printf() pSetting read_com()

SetCursor() SetVideoMode() sys_sec write_com()

 83

5.1.2 Source Code

5.1.2.1 User0.lnk
/***/
/* user0.lnk */
/***/
-lm -lg -ll

user0.rel

..\lib\520lib.lib

..\lib\c900ml.lib

/***/
/* User could provide desirable values to */
/* the following two variables. */
/***/
___MainStackSize__ = 0x001000;
HeapSize = 0x000100;

/***/
/* Do not modify anything beyond this line */
/***/
memory
{
 RAM : org = 0x400100, len = 0x01ff00
 ROM : org = 0xf80000, len = 0x070000
 IO : org = 0x100000, len = 0x100000
}

sections
{
 code org = 0xf80000 : {

*(f_head)
*(f_code)

 } > ROM

 sys_area org = 0x400100 : {
*(f_bcr)
..\lib\520lib.lib(f_area)
..\lib\c900ml.lib(f_area)

 } > RAM

 data org=org(code)+sizeof(code) addr=org(sys_area)+sizeof(sys_area) : {
*(f_data)

 } /* global variables with initial values */

 xcode org = org(data) + sizeof(data) addr = addr(data) + sizeof(data) : {
(f_xcode) / code reside on RAM */

 }

 const org = org(xcode) + sizeof(xcode) : {
*(f_const)
*(f_tail)

 } > ROM

 area org = addr(xcode) + sizeof(xcode) : {
. += ___MainStackSize__;
. += HeapSize;
*(f_unshare)
*(f_area)

 } > RAM
}

SysRamEnd = org(area) + sizeof(area);
DataRam = addr(data);
CodeRam = addr(xcode);
HeapTop = org(area) + ___MainStackSize__;
___MainStack__ = org(area);

/* End */

 84

5.1.2.2 User0.c

/***/
/* program : user0.c */
/* */
/***/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <520lib.h>

struct SMENU MSystem;
struct SMENU_ENTRY EInput;
struct SMENU_ENTRY EDownload;
struct SMENU_ENTRY EUpload;
static void FInput(void);
static void FDownload(void);
static void FUpload(void);

static struct SMENU MSystem={
 3,
 1,
 0,
 "CipherLab 520",
 {
 &EInput,
 &EDownload,
 &EUpload
 }
};

static struct SMENU_ENTRY EInput={
 0,3,
 "1. Input Data",
 FInput,
 0
};

static struct SMENU_ENTRY EDownload={
 0,5,
 "2. Download DBF",
 FDownload,
 0
};

static struct SMENU_ENTRY EUpload={
 0,7,
 "3. Upload Data",
 FUpload,
 0
};

extern void* pSetting;

static const unsigned char OSScannerDefault[23] = {
 0xdf, 0xff, 0xff, 0x00, 0x00, // enable all symbologies except CIP39
 0x35, 0x54, 0x80, 0x00, 0x10,
 0x3f, 0x00, 0xc0, 0x01, 0xc0,
 0x01, 0xc0, 0x01, 0xc0, 0x01,
 0x00, // Auto-off mode for Scanner 1 & 2
 0x0a, 0x0a // Time-out: 10 sec
};

#define BYTE unsigned char

static const int KEY_CLICK[] = {19,6,0,0};
static const int OK[] = {16,6,0,0};
static const int ERR[] = {20,10,16,10,20,10,16,10,0,0};
static const int POR[] = {16,10,0,5,16,5,0,5,16,5,0,0};
#define beep_click() on_beeper(KEY_CLICK)
#define beep_ok() on_beeper(OK)
#define beep_err() on_beeper(ERR)
#define beep_por() on_beeper(POR)
#define SP3 3
#define ID_LENGTH 10 /* DBF Key Length */
#define RECORD_LENGTH 40 /* DBF Record Length */

 85

int ID_dbf; /* DBF File Handle */
char InputBuf[128];
char OutputBuf[128];
int InputCnt;
char Data[4][ID_LENGTH+1];
char Record[RECORD_LENGTH];
static char ACK[] = "ACK\r";
static char NAK[] = "NAK\r";
static char OVER[] = "OVER\r";
static char FAIL[] = "FAIL\r";
static char DownloadCmd[] = "CIPHER";
static char UploadCmd[] = "CIPHER\r";

unsigned long UpDown_sec;

void main(void)
{
 BYTE c;

 beep_por();
 SetFont(FONT8X16);
 clr_scr();
 pSetting = OSScannerDefault;
 InitScanner1();

InitScanner2();
ID_dbf=create_DBF("VALID_ID", RECORD_LENGTH);

 create_index(ID_dbf, 1, 0, ID_LENGTH);
 for (c=1;c<17;c++) close_DBF(c);

if ((ID_dbf = open_DBF("VALID_ID")) <= 0) {
clr_scr();
printf("System Fails!");
while(1);

 }
 en_alpha(1);

 while(1) {
prc_menu(&MSystem);

 }
}

void FInput(void)
{

char c,*s;
int i,j;

loop:
clr_scr();
gotoxy(0,1);
printf("ID : ");
gotoxy(0,3);
printf("Name: ");
gotoxy(0,5);
printf("Des.: ");
gotoxy(0,7);
printf("Q'ty: ");
gotoxy(6,1);
SetCursor(CURSOR_ON);
while(1) {

if (Decode()) {
SetCursor(CURSOR_OFF);
if (strlen(CodeBuf)<=ID_LENGTH) {

beep_ok();
gotoxy(6,1);
clr_eol();
printf("%s",CodeBuf);
s=CodeBuf;
if (check_member(s)) {

gotoxy(6,7);
SetCursor(CURSOR_ON);
while(1) {

if (c=getchar()) {
if (c == KEY_ESC) {

SetCursor(CURSOR_OFF);
goto loop;

}
else if (c == KEY_CR) {

clr_eol();
scan_new_data(s);

}

 86

else beep_err();
}

}
}

else {
gotoxy(0,3);
clr_eol();
gotoxy(0,5);
clr_eol();
gotoxy(0,7);
clr_eol();
gotoxy(9,5);
printf("Invalid ID!");
while(getchar());
while(!getchar());
goto loop;

}
}

}
if (c=getchar()) {

if (c == KEY_ESC) break;
}

}

return;
}

/**/
/* download DBF from PC via RS232 */
/**/
void FDownload(void)
{

int i=0;
char c;
char *s;

clr_scr();
gotoxy(7,3);
printf("Waiting for DBF.");
open_com(SP3,BAUD_19200 | DATA_BIT8 | PARITY_NONE | HANDSHAKE_NONE);
UpDown_sec = sys_sec;
while(1) {

if (read_one_line(SP3,InputBuf,&InputCnt)) {
if (!strcmp(InputBuf,DownloadCmd)) {

write_com(SP3,ACK);
break;

}
write_com(SP3,NAK);
clr_scr();
gotoxy(8,3);
printf("Download Fail!");
while(getchar());
while(!getchar());
close_com(SP3);
return;

}
if (abs(UpDown_sec - sys_sec) > 20) {

clr_scr();
gotoxy(10,3);
printf("Time Out!");
while(getchar());
while(!getchar());
close_com(SP3);
return;

}
if (c=getchar()) {

if (c == KEY_ESC) {
close_com(SP3);
return;

}
}

}
clr_scr();
gotoxy(8,3);
printf("Downloading...");
UpDown_sec = sys_sec;
while(1) {

if (read_one_line(SP3,InputBuf,&InputCnt)) {

 87

if (strcmp(InputBuf,"")==0) {
write_com(SP3,ACK);
beep_ok();
clr_scr();
gotoxy(7,3);
printf("Download Finish!");
while(getchar());
while(!getchar());
break;

}
else {

s=InputBuf;
if (has_member(ID_dbf,1,s)!=0) {

delete_member(ID_dbf,1);
add_member(ID_dbf,s);
write_com(SP3,ACK);

}
else {

add_member(ID_dbf,s);
write_com(SP3,ACK);

}
UpDown_sec = sys_sec;

}
if (abs(UpDown_sec - sys_sec) > 5) {

write_com(SP3,NAK);
clr_scr();
gotoxy(8,3);
printf("Download Fail!");
while(getchar());
while(!getchar());
close_com(SP3);
return;

}
}

}
close_com(SP3);
return;

}

/**/
/* upload data to PC via RS232 */
/**/
void FUpload(void)
{

int i;
int Member;
unsigned long Up_sec;
char c;

clr_scr();
gotoxy(10,3);
printf("Upload...");
open_com(SP3,BAUD_19200 | DATA_BIT8 | PARITY_NONE | HANDSHAKE_NONE);
write_com(SP3,UploadCmd);
UpDown_sec = sys_sec;
Up_sec = sys_sec;
while(1) {

if(read_one_line(SP3,InputBuf,&InputCnt)) {
if (strcmp(InputBuf,"ACK")==0) break;
if (strcmp(InputBuf,"NAK")==0) {

clr_scr();
gotoxy(9,3);
printf("Upload Fail!");
while(getchar());
while(!getchar());
close_com(SP3);
return;

}
else {

write_com(SP3,UploadCmd);
Up_sec = sys_sec;

}
}
if (abs(UpDown_sec - sys_sec) > 20) {

clr_scr();
gotoxy(9,3);
printf("Upload Fail!");
while(getchar());
while(!getchar());

 88

close_com(SP3);
return;

}
if (abs(Up_sec - sys_sec) > 2) {

write_com(SP3,UploadCmd);
Up_sec = sys_sec;

}
if (c=getchar()) {

if (c == KEY_ESC) {
close_com(SP3);
return;

}
}

}

lseek_DBF(ID_dbf,1,0L,1);
Member= member_in_DBF(ID_dbf);
get_member(ID_dbf,1,OutputBuf);
write_com(SP3, OutputBuf);
while(com_eot(SP3)==0x00);
write_com(SP3,"\r");
lseek_DBF(ID_dbf,1,1L,0);
Up_sec = sys_sec;
i=1;
while(i<Member) {

if(read_one_line(SP3,InputBuf,&InputCnt)) {
if (strcmp(InputBuf,"ACK")==0) {

get_member(ID_dbf,1,OutputBuf);
write_com(SP3, OutputBuf);
while(com_eot(SP3)==0x00);
write_com(SP3,"\r");
lseek_DBF(ID_dbf,1,1L,0);
Up_sec = sys_sec;
i++;
}

else {
clr_scr();
gotoxy(9,3);
printf("Upload Fail!");
while(getchar());
while(!getchar());
close_com(SP3);
return;

}
}
if (abs(Up_sec - sys_sec) > 2) {

clr_scr();
gotoxy(9,3);
printf("Upload Fail!");
while(getchar());
while(!getchar());
close_com(SP3);
return;

}
}
write_com(SP3,OVER);
beep_ok();
clr_scr();
gotoxy(8,3);
printf("Upload Finish!");
while(getchar());
while(!getchar());
close_com(SP3);
return;

}

/**/
/* read one record from RS232 */
/**/
read_one_line(port, s, cnt)
 int port; /* RS232 port number */
 char *s; /* input buffer */
 int *cnt; /* input count */
{
 char c;
 if (read_com(port, &c) == 0x00) return(0);
 if (c != KEY_CR) {

if (*cnt < RECORD_LENGTH) {
*(s+(*cnt)) = c;

 89

(*cnt)++;
}
return(0); /* if too long, ignore */

 }
 *(s+(*cnt)) = 0x00;
 *cnt = 0x00;
 write_com(port, ""); /* stop transmission */

 return(1);
}

/**/
/* check if the record existed */
/**/
check_member(s)

char *s;
{

int i,j;

for (i=strlen(s);i<ID_LENGTH;i++) {
 *(s+i)=' ';

}

if (has_member(ID_dbf,1,s)) {
get_member(ID_dbf,1,s);
for (i=1;i<4;i++) {

for (j=0;j<ID_LENGTH;j++) {
Data[i][j] = *(s+i*ID_LENGTH+j);

}
Data[i][ID_LENGTH]=0x00;

}
gotoxy(6,3);
clr_eol();
printf("%s",Data[1]);
gotoxy(6,5);
clr_eol();
printf("%s",Data[2]);
gotoxy(6,7);
clr_eol();
printf("%s",Data[3]);
return(1);

}
else return(0);

}

/**/
/* scan new Q'ty data */
/**/
scan_new_data(s)

char *s;
{

char c;
int i=0,j;

clr_eol();
while(getchar());
while(1) {

while((c=getchar())==0x00);
switch (c) {

case KEY_ESC: return;
case KEY_BS: i--;

if (i<0) i=0;
gotoxy(6+i,7);
clr_eol();
*(s+3*ID_LENGTH+i) = 0x00;
break;

case KEY_CR: *(s+3*ID_LENGTH+i) = 0x00;
i = ID_LENGTH;
break;

default: *(s+3*ID_LENGTH+i) = c;
gotoxy(6+i,7);
printf("%c",c);
i++;

}
if (i==ID_LENGTH) break;

}
gotoxy(6,7);
beep_ok();
if (has_member(ID_dbf,1,s)!=0) delete_member(ID_dbf,1);

 90

add_member(ID_dbf,s);
return;

}

/**/
/* Initialize the LCD screen */
/**/
init_scr()
{
 SetCursor(CURSOR_OFF);
 SetVideoMode(VIDEO_NORMAL);
 clr_scr();
}

/* END */

	Development Environment
	Directory Structure
	Setup
	Development Flow
	Create Your Own C source program
	Compile
	Link
	Format Translation
	Download Program to Flash Memory

	C Compiler
	Size of Types�xe "types"

	520 Function Library
	System
	Reader
	Buzzer
	Calendar
	File Manipulation
	Digital Input / Output
	LED
	Keypad
	External AT Keyboard
	LCD
	Power
	Communication Ports
	RS485
	Memory
	Miscellaneous

	Standard Library Routines
	Input and Output : <stdio.h>
	Character Class Test : <ctype.h>
	String Functions : <string.h>
	Mathematical Functions : <math.h>
	Utility Function : <stdlib.h>
	Diagnostics : <assert.h>
	Variable Argument Lists : <stdarg.h>
	Non-Local Jumps : <setjmp.h>
	Signals : <signal.h>
	Date and Time Function : <time.h>
	Implementation-defined Limits : <limits.h> and <float.h>

	Real Time Kernel
	Sample Programs
	User0
	
	User0.lnk
	User0.c

